計算機(jī)圖形學(xué)課件_第1頁
計算機(jī)圖形學(xué)課件_第2頁
計算機(jī)圖形學(xué)課件_第3頁
計算機(jī)圖形學(xué)課件_第4頁
計算機(jī)圖形學(xué)課件_第5頁
已閱讀5頁,還剩108頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

計算計算機(jī)圖形ComputerDifferentialGeometryandDiscreteDifferentialDifferentialofCurvesand????DifferentialGeometryofaDifferentialGeometryofaIandIIFundamentalBendingDifferentialGeometryDifferentialGeometryofaDifferentialGeometryofDifferentialGeometryofaPointponthecurveatpDifferentialGeometryofaTangentTtotheDifferentialGeometryofaTangentTtothecurveatpTCuCuDifferentialGeometryofaNormalNandBinormalBtothecurveatDifferentialGeometryofaNormalNandBinormalBtothecurveatBpTCuuTCuuNN2CuBCuBCuCuuCuCuDifferentialGeometryofaCurvatureκDifferentialGeometryofaCurvatureκatu0andtheradiusρosculatingGeometricBpNDifferentialGeometryofaDifferentialGeometryofaCurvatureatu0isthecomponentof-NsalongTTComputingtheCurvatureofau1TNsusuuCCuuuTCs1sComputingtheCurvatureofau1TNsusuuCCuuuTCs1sCuuu ssuCu sCuCuComputingtheCurvatureofaCuCuuCNuuC CuuComputingtheCurvatureofaCuCuuCNuuC CuuuCuuCuCuuuCuCuCuuNC 2uuuCuCuuCuuCuCuuC 2uuCuCuu uuC2uuComputingtheCurvatureofaCuCuuCNuuC CuuuCuuComputingtheCurvatureofaCuCuuCNuuC CuuuCuuCuuCuCuuuCuCuNC 2uuuCuCuuCuuC 2uuCuCuu uuC2uuComputingtheCurvatureofaCuCuuuCuCuComputingtheCurvatureofaCuCuuuCuCuCuuCuuNC uuuCuCuu uuC2uuComputingtheCurvatureofaCuCuuuCuCuCuuCuuNCComputingtheCurvatureofaCuCuuuCuCuCuuCuuNC uuu CCuCuuuuCuCuu2CuCuCuuCuuCC uuuuCuCuuCuCuCuuCuuComputingtheCurvatureofaCuCuuuCuCuCuuCuuNC uuuComputingtheCurvatureofaCuCuuuCuCuCuuCuuNC uuu CCuCuuuuCuCuu2CuCuuCuCuCuCuuCuCuuCuCuCuCuCu3CuAAShortCurveCurve????DifferentialGeometryofaDifferentialGeometryofaIandIIFundamentalBendingDifferentialGeometryDifferentialGeometryofaDifferentialGeometryofDifferentialGeometryofaPointponthesurfaceatpDifferentialGeometryofaTangentDifferentialGeometryofaTangentSuintheuSu,SpuDifferentialGeometryofaTangentDifferentialGeometryofaTangentSvinthevSu,SpvDifferentialGeometryofaPlaneofDifferentialGeometryofaPlaneoftangentsTTpMetricofthesurface?STuvSSSuvMetricofthesurface?STuvSSSuvvSv vSvuvvFSvDifferentialGeometryofaNormalDifferentialGeometryofaNormalNNpTDifferentialGeometryofaDifferentialGeometryofaNormalNpTDifferentialGeometryofaNpDifferentialGeometryofaNpT1TTDifferentialGeometryofaTDifferentialGeometryofaTNpTTT1TTS NuTNTuvvvSNvS NuTNTuvvvSNv vvvuvNNvSNNvSMvNSv????DifferentialGeometryofaDifferentialGeometryofaIandIIFundamentalBendingChangeofChangeofpTangentPlaneofChangeofbθpaConstructanOrthonormalSSSa0ussSSbbsinSChangeofbθpaConstructanOrthonormalSSSa0ussSSbbsinSv ttbS0SS suu1aSSSabsinbt vvChangeofbθpFirstFundamentalaSS0SusAChangeofbθpFirstFundamentalaSS0SusAtISSSSSuvstvtabcosabtChangeofbTsutθvpaApointTexpressedin(u,v)andChangeofbTsutθvpaApointTexpressedin(u,v)andSutuvTvsSSvtSsSutStSv????DifferentialGeometryofaDifferentialGeometryofaIandIIFundamentalBendingκTisafunctionofdirectionbTθSNpuNvκTisafunctionofdirectionbTθSNpuNvauvvSvtA1IIA1tA1tSSStStbHowdoweanalyzetheκTθbHowdoweanalyzetheκTθpas A1IIA1TStSSEEigenanalysisof1?bEigenvalues={κ1,κ2}Eigenvectors=φθpA1 a AEEigenanalysisof1?bEigenvalues={κ1,κ2}Eigenvectors=φθpA1 a ATSSStEigendecompostionof0ss 22111St0tt2221s2E1S12stt21coscossinsincosSsinvbcossincoscoscossinsincosSsinvbcossincosEαcossin2φcosVθsinSpas?tcoscoscoscossin?sin IIsinsin0cossin2cos21sin2????DifferentialGeometryofaDifferentialGeometryofaIandIIFundamentalBendingWeingartenE1bWI A φSStA11tθS?SA1tA1pau t?11tAtSWeingartenE1bWI A φSStA11tθS?SA1tA1pau t?11tAtSVV111??AASVV0VA1t?A1tu2s21tv22211WeingartenWISSFM1NEGFEGLGMWeingartenWISSFM1NEGFEGLGMFN1EMENFMEGFGL2FMEN GL2FMEN24EGF2LNM22EGF2G EGF12TraceWGL2FM2EGF2M22WeingartenGLGMFN1WEGF2EMENWeingartenGLGMFN1WEGF2EMENFMGL2FMEN24EGF2LNM22EGF2GL2FMENIfκ1≠GL2FMEN24EGF2LNM2GLEN 2EMSuv1elseumbilic(κ1=κ2),choseorthogonalE2NSu????DifferentialGeometryofaDifferentialGeometryofaIandIIFundamentalBendingBending 2EB12S122M2GS4M2A2G Bending 2EB12S122M2GS4M2A2G 22B1222122 2SS4 2A22S22221 2M 4S212A42421S22MGBending 2EB12S122M2GS4M2A2G 22BBending 2EB12S122M2GS4M2A2G 22B1222122 2SS4 2A22S22221 2M 4S212A42421S22MGMinimizingSA=MinimizingSA1222MShortShortPrincipalMinPrincipalMinMaxSurfaceSurfaceDiscreteDiscreteDifferentialon三角網(wǎng)三角網(wǎng)格曲面的光滑性However,meshesareonlyHowever,meshesareonly?Meshesarepiecewiselinear–Infinitelycontinuousinsideeach–C0edgesandDiscreteDifferentialDiscreteDifferential?HowtoapplythetraditionalgeometryondiscretemeshNormal–EstimationofEstimationofDifferential?Approximatethe(unknown)Approximatethesurface&computecontinuousdifferentialmeasures(normal,curvature)ApproximatedifferentialmeasuresforContinuousContinuousQuadraticQuadraticQuadraticQuadraticApproximationQuadraticQuadraticApproximationQuadraticQuadraticApproximationOther?Cubic–andV.AOther?Cubic–andV.Adirectionvectors.ACMTransactionson23,1(2004),Implicitsurface–YutakaOhtakeetal.Multi-levelpartitionofunityimplicits.Siggraph2003.Many??DiscreteDiscreteNormal?NormalNormal?NormalestimationonDefinedforeachWeighted:faceareas,anglesat?WhathappenatMeanMeanMeanMeanCurvatureGaussianGaussian–MeanMeanCurvature–MeanMeanMEYERM.,DESBRUNM.,SCHR?DERP.,A.:Discretedifferential-geometryoperatorsfortriangulated2-manifolds.InVisualizationandMathematicsIII,HegeH.-C.,PolthierK.,(Eds.).Springer,2003,pp.35–58.(PDF)?????Feature????FeatureShaperecognitionAnyfeature-aware–Preservingsalientfeaturesin?–WhatarefeaturesonDifferentialDifferentialMeshMeshSurface:2DGraphin??Prosandv1.5-0.960751-v0.81-0.891238-v0.16-0.233535-v1.49-2.44325-v1.59-2.98815-v1.66-2.81016-v1.41-1.14861-v1-1.40023-v0.88-1.33122-v1.69-2.60816-v1.68-2.36516-…Differential(LaplaceDifferential(Laplace?Representlocaldetailateachsurface–betterdescribetheLineartransitionfromglobaltoUsefulforoperationsonsurfaceswheresurfacedetailsareimportant??What’sWhat’sareDetail=surface–smooth(surface)Smoothing=averaging??Differential?Differential?wivi averageofWhat’sthe?AbsoluteWhat’sthe?Absolutevi(xi,yi,zi?RelativejN(iwjvjviWeighting?wjWeighting?wj wj(cotcot??wjjjGeometric?DCsrepresentthelocaldetail/localTheGeometric?DCsrepresentthelocaldetail/localThesizeapproximatesthemeanvv len(vivδiidvN(ii1len(vvH(v)iiilen(MeshMeshLaplacianSmoothingLaplacianSmoothingLaplace(Umbrellann1n1nLaplace(Umbrellann1n1nQiiLQkQk

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論