




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
計算計算機(jī)圖形ComputerDifferentialGeometryandDiscreteDifferentialDifferentialofCurvesand????DifferentialGeometryofaDifferentialGeometryofaIandIIFundamentalBendingDifferentialGeometryDifferentialGeometryofaDifferentialGeometryofDifferentialGeometryofaPointponthecurveatpDifferentialGeometryofaTangentTtotheDifferentialGeometryofaTangentTtothecurveatpTCuCuDifferentialGeometryofaNormalNandBinormalBtothecurveatDifferentialGeometryofaNormalNandBinormalBtothecurveatBpTCuuTCuuNN2CuBCuBCuCuuCuCuDifferentialGeometryofaCurvatureκDifferentialGeometryofaCurvatureκatu0andtheradiusρosculatingGeometricBpNDifferentialGeometryofaDifferentialGeometryofaCurvatureatu0isthecomponentof-NsalongTTComputingtheCurvatureofau1TNsusuuCCuuuTCs1sComputingtheCurvatureofau1TNsusuuCCuuuTCs1sCuuu ssuCu sCuCuComputingtheCurvatureofaCuCuuCNuuC CuuComputingtheCurvatureofaCuCuuCNuuC CuuuCuuCuCuuuCuCuCuuNC 2uuuCuCuuCuuCuCuuC 2uuCuCuu uuC2uuComputingtheCurvatureofaCuCuuCNuuC CuuuCuuComputingtheCurvatureofaCuCuuCNuuC CuuuCuuCuuCuCuuuCuCuNC 2uuuCuCuuCuuC 2uuCuCuu uuC2uuComputingtheCurvatureofaCuCuuuCuCuComputingtheCurvatureofaCuCuuuCuCuCuuCuuNC uuuCuCuu uuC2uuComputingtheCurvatureofaCuCuuuCuCuCuuCuuNCComputingtheCurvatureofaCuCuuuCuCuCuuCuuNC uuu CCuCuuuuCuCuu2CuCuCuuCuuCC uuuuCuCuuCuCuCuuCuuComputingtheCurvatureofaCuCuuuCuCuCuuCuuNC uuuComputingtheCurvatureofaCuCuuuCuCuCuuCuuNC uuu CCuCuuuuCuCuu2CuCuuCuCuCuCuuCuCuuCuCuCuCuCu3CuAAShortCurveCurve????DifferentialGeometryofaDifferentialGeometryofaIandIIFundamentalBendingDifferentialGeometryDifferentialGeometryofaDifferentialGeometryofDifferentialGeometryofaPointponthesurfaceatpDifferentialGeometryofaTangentDifferentialGeometryofaTangentSuintheuSu,SpuDifferentialGeometryofaTangentDifferentialGeometryofaTangentSvinthevSu,SpvDifferentialGeometryofaPlaneofDifferentialGeometryofaPlaneoftangentsTTpMetricofthesurface?STuvSSSuvMetricofthesurface?STuvSSSuvvSv vSvuvvFSvDifferentialGeometryofaNormalDifferentialGeometryofaNormalNNpTDifferentialGeometryofaDifferentialGeometryofaNormalNpTDifferentialGeometryofaNpDifferentialGeometryofaNpT1TTDifferentialGeometryofaTDifferentialGeometryofaTNpTTT1TTS NuTNTuvvvSNvS NuTNTuvvvSNv vvvuvNNvSNNvSMvNSv????DifferentialGeometryofaDifferentialGeometryofaIandIIFundamentalBendingChangeofChangeofpTangentPlaneofChangeofbθpaConstructanOrthonormalSSSa0ussSSbbsinSChangeofbθpaConstructanOrthonormalSSSa0ussSSbbsinSv ttbS0SS suu1aSSSabsinbt vvChangeofbθpFirstFundamentalaSS0SusAChangeofbθpFirstFundamentalaSS0SusAtISSSSSuvstvtabcosabtChangeofbTsutθvpaApointTexpressedin(u,v)andChangeofbTsutθvpaApointTexpressedin(u,v)andSutuvTvsSSvtSsSutStSv????DifferentialGeometryofaDifferentialGeometryofaIandIIFundamentalBendingκTisafunctionofdirectionbTθSNpuNvκTisafunctionofdirectionbTθSNpuNvauvvSvtA1IIA1tA1tSSStStbHowdoweanalyzetheκTθbHowdoweanalyzetheκTθpas A1IIA1TStSSEEigenanalysisof1?bEigenvalues={κ1,κ2}Eigenvectors=φθpA1 a AEEigenanalysisof1?bEigenvalues={κ1,κ2}Eigenvectors=φθpA1 a ATSSStEigendecompostionof0ss 22111St0tt2221s2E1S12stt21coscossinsincosSsinvbcossincoscoscossinsincosSsinvbcossincosEαcossin2φcosVθsinSpas?tcoscoscoscossin?sin IIsinsin0cossin2cos21sin2????DifferentialGeometryofaDifferentialGeometryofaIandIIFundamentalBendingWeingartenE1bWI A φSStA11tθS?SA1tA1pau t?11tAtSWeingartenE1bWI A φSStA11tθS?SA1tA1pau t?11tAtSVV111??AASVV0VA1t?A1tu2s21tv22211WeingartenWISSFM1NEGFEGLGMWeingartenWISSFM1NEGFEGLGMFN1EMENFMEGFGL2FMEN GL2FMEN24EGF2LNM22EGF2G EGF12TraceWGL2FM2EGF2M22WeingartenGLGMFN1WEGF2EMENWeingartenGLGMFN1WEGF2EMENFMGL2FMEN24EGF2LNM22EGF2GL2FMENIfκ1≠GL2FMEN24EGF2LNM2GLEN 2EMSuv1elseumbilic(κ1=κ2),choseorthogonalE2NSu????DifferentialGeometryofaDifferentialGeometryofaIandIIFundamentalBendingBending 2EB12S122M2GS4M2A2G Bending 2EB12S122M2GS4M2A2G 22B1222122 2SS4 2A22S22221 2M 4S212A42421S22MGBending 2EB12S122M2GS4M2A2G 22BBending 2EB12S122M2GS4M2A2G 22B1222122 2SS4 2A22S22221 2M 4S212A42421S22MGMinimizingSA=MinimizingSA1222MShortShortPrincipalMinPrincipalMinMaxSurfaceSurfaceDiscreteDiscreteDifferentialon三角網(wǎng)三角網(wǎng)格曲面的光滑性However,meshesareonlyHowever,meshesareonly?Meshesarepiecewiselinear–Infinitelycontinuousinsideeach–C0edgesandDiscreteDifferentialDiscreteDifferential?HowtoapplythetraditionalgeometryondiscretemeshNormal–EstimationofEstimationofDifferential?Approximatethe(unknown)Approximatethesurface&computecontinuousdifferentialmeasures(normal,curvature)ApproximatedifferentialmeasuresforContinuousContinuousQuadraticQuadraticQuadraticQuadraticApproximationQuadraticQuadraticApproximationQuadraticQuadraticApproximationOther?Cubic–andV.AOther?Cubic–andV.Adirectionvectors.ACMTransactionson23,1(2004),Implicitsurface–YutakaOhtakeetal.Multi-levelpartitionofunityimplicits.Siggraph2003.Many??DiscreteDiscreteNormal?NormalNormal?NormalestimationonDefinedforeachWeighted:faceareas,anglesat?WhathappenatMeanMeanMeanMeanCurvatureGaussianGaussian–MeanMeanCurvature–MeanMeanMEYERM.,DESBRUNM.,SCHR?DERP.,A.:Discretedifferential-geometryoperatorsfortriangulated2-manifolds.InVisualizationandMathematicsIII,HegeH.-C.,PolthierK.,(Eds.).Springer,2003,pp.35–58.(PDF)?????Feature????FeatureShaperecognitionAnyfeature-aware–Preservingsalientfeaturesin?–WhatarefeaturesonDifferentialDifferentialMeshMeshSurface:2DGraphin??Prosandv1.5-0.960751-v0.81-0.891238-v0.16-0.233535-v1.49-2.44325-v1.59-2.98815-v1.66-2.81016-v1.41-1.14861-v1-1.40023-v0.88-1.33122-v1.69-2.60816-v1.68-2.36516-…Differential(LaplaceDifferential(Laplace?Representlocaldetailateachsurface–betterdescribetheLineartransitionfromglobaltoUsefulforoperationsonsurfaceswheresurfacedetailsareimportant??What’sWhat’sareDetail=surface–smooth(surface)Smoothing=averaging??Differential?Differential?wivi averageofWhat’sthe?AbsoluteWhat’sthe?Absolutevi(xi,yi,zi?RelativejN(iwjvjviWeighting?wjWeighting?wj wj(cotcot??wjjjGeometric?DCsrepresentthelocaldetail/localTheGeometric?DCsrepresentthelocaldetail/localThesizeapproximatesthemeanvv len(vivδiidvN(ii1len(vvH(v)iiilen(MeshMeshLaplacianSmoothingLaplacianSmoothingLaplace(Umbrellann1n1nLaplace(Umbrellann1n1nQiiLQkQk
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年供暖設(shè)備改造合同樣本
- 2025年住宅防盜門保養(yǎng)合同
- 2025年家庭財產(chǎn)保障合同示范
- 2025年家居裝修裝飾策劃合同
- 2025年停車場策劃管理合同范本
- 2025年醫(yī)療機(jī)構(gòu)建筑施工合同案例
- 2025年個人擔(dān)保合同要點(diǎn)
- 常年勞務(wù)合同范本
- 代理服務(wù)合同許可協(xié)議
- 食品供應(yīng)鏈關(guān)鍵合同采購
- 2022年同等學(xué)力人員申請碩士學(xué)位日語水平統(tǒng)一考試真題
- 病毒性感染性腹瀉醫(yī)學(xué)課件
- 水泥攪拌樁記錄表格范本
- DL∕T 458-2020 板框式旋轉(zhuǎn)濾網(wǎng)
- 食品添加劑、食品污染物的本底與轉(zhuǎn)化來源
- 短視頻:策劃制作與運(yùn)營課件
- 水閘設(shè)計步驟計算書(多表)
- SMA瀝青路面的設(shè)計與施工
- 腎內(nèi)科相關(guān)基礎(chǔ)知識學(xué)習(xí)教案
- (完整版)Frenchay構(gòu)音障礙評定
- NMR 核磁雜質(zhì)峰位置
評論
0/150
提交評論