第章.4同步訓練及解析_第1頁
第章.4同步訓練及解析_第2頁
第章.4同步訓練及解析_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

PAGEPAGE3人教A高中數(shù)學選修2-3同步訓練1.設(shè)隨機變量ξ~N(2,2),則D(eq\f(1,2)ξ)的值為()A.1 B.2C.eq\f(1,2) D.4解析:選C.∵ξ~N(2,2),∴D(ξ)=2.∴Deq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)ξ))=eq\f(1,22)D(ξ)=eq\f(1,4)×2=eq\f(1,2).2.如圖是當σ取三個不同值σ1、σ2、σ3的三種正態(tài)曲線N(0,σ2)的圖象,那么σ1、σ2、σ3的大小關(guān)系是()A.σ1>1>σ2>σ3>0B.0<σ1<σ2<1<σ3C.σ1>σ2>1>σ3>0D.0<σ1<σ2=1<σ3解析:選D.當μ=0,σ=1時,正態(tài)曲線f(x)=eq\f(1,\r(2π))e-eq\f(x2,2)在x=0處取最大值eq\f(1,\r(2π)),故σ2=1.由正態(tài)曲線的性質(zhì),當μ一定時,曲線的形狀由σ確定,當σ越小,曲線越“瘦高”,反之越“矮胖”,故選D.3.已知隨機變量ξ服從正態(tài)分布N(2,σ2),且P(ξ<4)=0.8,則P(0<ξ<2)=()A.0.6 B.0.4C.0.3 D.0.2解析:選C.∵P(ξ<4)=0.8,∴P(ξ>4)=1-0.8=0.2.由題意知圖象的對稱軸為直線x=2,∴P(ξ<0)=P(ξ>4)=0.3.∴P(0<ξ<4)=1-P(ξ<0)-P(ξ>4)=0.6.∴P(0<ξ<2)=eq\f(1,2)P(0<ξ<4)=0.3.4.設(shè)隨機變量ξ服從正態(tài)分布N(2,9),若P(ξ>c+1)=P(ξ<c-1),則c的值為________.解析:c+1與c-1關(guān)于ξ=2對稱,eq\f(c+1+c-1,2)=2,∴c=2.答案:2一、選擇題1.設(shè)隨機變量X服從正態(tài)分布,且相應(yīng)的概率密度函數(shù)為φ(x)=eq\f(1,\r(6π))e-eq\f(x2-4x+4,6),則()A.μ=2,σ=3 B.μ=3,σ=2C.μ=2,σ=eq\r(3) D.μ=3,σ=eq\r(3)解析:選C.由φ(x)=eq\f(1,\r(2π)×\r(3))eeq\f(-x-22,2\r(3)2),得μ=2,σ=eq\r(3).故選C.2.若隨機變量X的密度函數(shù)為f(x)=eq\f(1,\r(2π))e-eq\f(x2,2),X在(-2,-1)和(1,2)內(nèi)取值的概率分別為p1、p2,則p1、p2的關(guān)系為()A.p1>p2 B.p1<p2C.p1=p2 D.不確定解析:選C.由題意知μ=0,σ=1,所以曲線關(guān)于x=0對稱,所以p1=p2.3.已知隨機變量X~N(μ,σ2),則Y=aX+b服從()A.Y~N(aμ,σ2) B.Y~N(0,1)C.Y~N(eq\f(μ,a),eq\f(σ2,b)) D.Y~N(aμ+b,a2σ2)解析:選D.由X~N(μ,σ2)知E(X)=μ,D(X)=σ2,∴E(aX+b)=aE(X)+b=aμ+b,D(aX+b)=a2D(X)=a2σ2,從而Y~N(aμ+b,a2σ2).4.已知隨機變量X服從正態(tài)分布N(2,σ2),P(X<4)=0.84,則P(X≤0)=()A.0.16 B.0.32C.0.68 D.0.84解析:選A.由X~N(2,σ2),對稱軸為x=2,密度函數(shù)曲線如圖所示,可知P(X≤0)=P(X≥4)=1-P(X<4)=1-0.84=0.16.5.設(shè)隨機變量ξ服從正態(tài)分布N(0,1),已知P(ξ<-1.96)=0.025,則P(|ξ|<1.96)=()A.0.025 B.0.050C.0.950 D.0.975解析:選C.ξ服從正態(tài)分布N(0,1),則P(ξ<1.96)=1-P(ξ≤-1.96),從而P(|ξ|<1.96)=P(-1.96<ξ<1.96)=P(ξ<1.96)-P(ξ≤-1.96)=1-2P(ξ≤-1.96)=1-2×0.025=0.950.故選C.6.設(shè)隨機變量ξ服從正態(tài)分布N(0,1),若P(ξ>1)=p,則P(-1<ξ<0)=()A.eq\f(1,2)+p B.eq\f(1,2)-pC.1-2p D.1-p解析:選B.P(-1<ξ<0)=eq\f(1,2)P(-1<ξ<1)=eq\f(1,2)[1-2P(ξ>1)]=eq\f(1,2)-P(ξ>1)=eq\f(1,2)-p.二、填空題7.已知正態(tài)分布落在區(qū)間(0.2,+∞)上的概率為0.5,那么相應(yīng)的正態(tài)曲線f(x)在x=________時,達到最高點.解析:由于正態(tài)曲線關(guān)于直線x=μ對稱且其落在區(qū)間(0.2,+∞)上的概率為0.5,得μ=0.2.答案:0.28.設(shè)隨機變量ξ服從正態(tài)分布N(μ,σ2),若P(ξ>3)=P(ξ<-1),則E(ξ)=________.解析:ξ~N(μ,σ2),∴μ=eq\f(3+-1,2),∴μ=1,∴E(ξ)=μ=1.答案:19.某種零件的尺寸X(cm)服從正態(tài)分布N(3,1),則不屬于區(qū)間(1,5)這個尺寸范圍的零件數(shù)約占總數(shù)的________.解析:屬于區(qū)間(μ-2σ,μ+2σ)即區(qū)間(1,5)的取值概率約為95.4%,故不屬于區(qū)間(1,5)這個尺寸范圍的零件數(shù)約占總數(shù)的1-95.44%=4.56%.答案:4.56%三、解答題10.在一次測試中,測量結(jié)果X服從正態(tài)分布N(2,σ2)(σ>0),若X在(0,2)內(nèi)取值的概率為0.2,求:(1)X在(0,4)內(nèi)取值的概率;(2)P(X>4).解:(1)由于X~N(2,σ2),對稱軸x=2,畫出示意圖如圖:∵P(0<X<2)=P(2<X<4),∴P(0<X<4)=2P(0<X<2)=2×0.2=0.4.(2)P(X>4)=eq\f(1,2)[1-P(0<X<4)]=eq\f(1,2)(1-0.4)=0.3.11.某廠生產(chǎn)的圓柱形零件的外直徑X(單位:cm)服從正態(tài)分布N(4,0.52),質(zhì)檢人員從該廠生產(chǎn)的1000件零件中隨機抽查一件,測得它的外直徑為5.7cm,解:由于

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論