遼寧省營(yíng)口市老邊區(qū)實(shí)驗(yàn)中學(xué)2022年高二數(shù)學(xué)理月考試題含解析_第1頁
遼寧省營(yíng)口市老邊區(qū)實(shí)驗(yàn)中學(xué)2022年高二數(shù)學(xué)理月考試題含解析_第2頁
遼寧省營(yíng)口市老邊區(qū)實(shí)驗(yàn)中學(xué)2022年高二數(shù)學(xué)理月考試題含解析_第3頁
遼寧省營(yíng)口市老邊區(qū)實(shí)驗(yàn)中學(xué)2022年高二數(shù)學(xué)理月考試題含解析_第4頁
遼寧省營(yíng)口市老邊區(qū)實(shí)驗(yàn)中學(xué)2022年高二數(shù)學(xué)理月考試題含解析_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

遼寧省營(yíng)口市老邊區(qū)實(shí)驗(yàn)中學(xué)2022年高二數(shù)學(xué)理月考試題含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.設(shè)口袋中有黑球、白球共7個(gè),從中任取2個(gè)球,已知取到白球個(gè)數(shù)的數(shù)學(xué)期望值為,則口袋中白球的個(gè)數(shù)為(

)A.3 B.4 C.5 D.2參考答案:A【分析】先確定隨機(jī)變量取法,再分別求對(duì)應(yīng)概率,利用數(shù)學(xué)期望公式列方程解得白球的個(gè)數(shù).【詳解】設(shè)口袋中有白球個(gè),由已知可得取得白球的可能取值為0,1,2,則服從超幾何分布,,,,.∵,∴,解得.故選:A.【點(diǎn)睛】本題考查數(shù)學(xué)期望公式,考查基本分析求解能力,屬中檔題.2.5位同學(xué)報(bào)名參加兩個(gè)課外活動(dòng)小組,每位同學(xué)限報(bào)其中的一個(gè)小組,則不同的報(bào)名方法共有()A.10種 B.20種C.25種 D.32種參考答案:D3.二次不等式ax2+bx+1>0的解集為{x|﹣1<x<},則ab的值為()A.﹣5 B.5 C.﹣6 D.6參考答案:D【考點(diǎn)】一元二次不等式的解法;基本不等式.【專題】不等式的解法及應(yīng)用.【分析】先對(duì)原不等式進(jìn)行等價(jià)變形,進(jìn)而利用韋達(dá)定理求得和的值,進(jìn)而求得a和b,則ab的值可求得.【解答】解:∵不等式ax2+bx+1>0的解集為{x|﹣1<x<},∴a<0,∴原不等式等價(jià)于﹣ax2﹣bx﹣1<0,由韋達(dá)定理知﹣1+=﹣,﹣1×3=,∴a=﹣3,b=﹣2,∴ab=6.故選D【點(diǎn)評(píng)】本題主要考查了一元二次不等式的解法.注意和一元二次方程的相關(guān)問題解決.4.右圖程序流程圖描述的算法的運(yùn)行結(jié)果是

A.-l

B.-2

C.-5

D.5參考答案:C5.函數(shù)在點(diǎn)(0,1)處的切線方程為(

)A.

B.

C.

D.參考答案:D6.已知定義在R上的奇函數(shù)的圖象關(guān)于直線對(duì)稱,且,則的值為

()

A.

-1

B.

0

C.

1

D.

2參考答案:A7.從某高中隨機(jī)選取5名高三男生,其身高和體重的數(shù)據(jù)如表所示:身高x(cm)160165170175180體重y(kx)6366707274根據(jù)上表可得回歸直線方程,據(jù)此模型預(yù)報(bào)身高為172cm的高三男生的體重為()A.70.09kg B.70.12kg C.70.55kg D.71.05kg參考答案:B【考點(diǎn)】線性回歸方程.【分析】根據(jù)所給的表格做出本組數(shù)據(jù)的樣本中心點(diǎn),根據(jù)樣本中心點(diǎn)在線性回歸直線上,利用待定系數(shù)法做出的值,現(xiàn)在方程是一個(gè)確定的方程,根據(jù)所給的x的值,代入線性回歸方程,預(yù)報(bào)身高為172cm的高三男生的體重【解答】解:由表中數(shù)據(jù)可得==170==69∵(,)一定在回歸直線方程上故69=0.56×170+解得=﹣26.2故當(dāng)x=172時(shí),=70.12故選B8.下列說法正確的是()A.正方形的直觀圖可能是平行四邊形B.梯形的直觀圖可能是平行四邊形C.矩形的直觀圖可能是梯形D.互相垂直的兩條直線的直觀圖一定是互相垂直的兩條直線參考答案:A【考點(diǎn)】平面的基本性質(zhì)及推論.【分析】根據(jù)直觀圖的做法,在做直觀圖時(shí),原來與橫軸平行的與X′平行,且長(zhǎng)度不變,原來與y軸平行的與y′平行,長(zhǎng)度變?yōu)樵瓉淼囊话耄倚碌淖鴺?biāo)軸之間的夾角是45度,根據(jù)做法,得到四個(gè)說法的正誤.【解答】解:根據(jù)直觀圖的做法,在做直觀圖時(shí),原來與橫軸平行的與X′平行,且長(zhǎng)度不變,原來與y軸平行的與y′平行,長(zhǎng)度變?yōu)樵瓉淼囊话?,且新的坐?biāo)軸之間的夾角是45度,∴原來垂直的畫出直觀圖不一定垂直,原來是對(duì)邊平行的仍然平行,故選A.9.不等式的解集不可能是

)A.

B.

C.

D.

參考答案:A10.閱讀如圖的程序框圖,若輸出的S的值等于16,那么在程序框圖中的判斷框內(nèi)應(yīng)填寫的條件是(

)A.

i>4

B.i>5

C.

i>6

D.i>7參考答案:B二、填空題:本大題共7小題,每小題4分,共28分11.設(shè)D為不等式組表示的平面區(qū)域,區(qū)域D上的點(diǎn)與點(diǎn)(1,0)之間的距離的最小值為__________參考答案:略12.數(shù)列1,2,3,4,5,…,的前n項(xiàng)之和等于

.參考答案:13.兩千多年前,古希臘畢達(dá)哥拉斯學(xué)派的數(shù)學(xué)家曾經(jīng)在沙灘上研究數(shù)學(xué)問題,他們?cè)谏碁┥袭孅c(diǎn)或用小石子來表示數(shù),按照點(diǎn)或小石子能排列的形狀對(duì)數(shù)進(jìn)行分類,如下圖中的實(shí)心點(diǎn)個(gè)數(shù)1,5,12,22,…,

被稱為五角形數(shù),其中第1個(gè)五角形數(shù)記作,第2個(gè)五角形數(shù)記作,第3個(gè)五角形數(shù)記作,第4個(gè)五角形數(shù)記作,……,若按此規(guī)律繼續(xù)下去,(1)_________;(2)若,則

參考答案:35;9.14.的展開式奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)之和為128,則展開式中二項(xiàng)式系數(shù)最大項(xiàng)為______.參考答案:【分析】根據(jù)二項(xiàng)式展開式奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)之和公式列方程,求得的值,進(jìn)而求得二項(xiàng)式展開式中二項(xiàng)式系數(shù)最大項(xiàng).【詳解】由于二項(xiàng)式展開式奇數(shù)項(xiàng)的二項(xiàng)式系數(shù)之和為,即,所以,此時(shí)二項(xiàng)式展開式一共有項(xiàng),故第項(xiàng)的二項(xiàng)式系數(shù)最大,.【點(diǎn)睛】本小題主要考查二項(xiàng)式展開式的二項(xiàng)式系數(shù)之和,考查二項(xiàng)式展開式中二項(xiàng)式系數(shù)最大的項(xiàng)的求法,屬于基礎(chǔ)題.15.設(shè)函數(shù)f(x)=ax3﹣3x+1(x∈R),若對(duì)于任意的x∈[﹣1,1]都有f(x)≥0成立,則實(shí)數(shù)a的值為

.參考答案:4【考點(diǎn)】利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)的最值.【分析】先求出f′(x)=0時(shí)x的值,進(jìn)而討論函數(shù)的增減性得到f(x)的最小值,對(duì)于任意的x∈[﹣1,1]都有f(x)≥0成立,可轉(zhuǎn)化為最小值大于等于0即可求出a的范圍.【解答】解:由題意,f′(x)=3ax2﹣3,當(dāng)a≤0時(shí)3ax2﹣3<0,函數(shù)是減函數(shù),f(0)=1,只需f(1)≥0即可,解得a≥2,與已知矛盾,當(dāng)a>0時(shí),令f′(x)=3ax2﹣3=0解得x=±,①當(dāng)x<﹣時(shí),f′(x)>0,f(x)為遞增函數(shù),②當(dāng)﹣<x<時(shí),f′(x)<0,f(x)為遞減函數(shù),③當(dāng)x>時(shí),f(x)為遞增函數(shù).所以f()≥0,且f(﹣1)≥0,且f(1)≥0即可由f()≥0,即a?﹣3?+1≥0,解得a≥4,由f(﹣1)≥0,可得a≤4,由f(1)≥0解得2≤a≤4,綜上a=4為所求.故答案為:4.16.方程表示焦點(diǎn)在軸上的橢圓,則實(shí)數(shù)的取值范圍是

.參考答案:17.設(shè),則中最大的數(shù)是

.參考答案:三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.將撲克牌4種花色的A,K,Q共12張洗勻.(1)甲從中任意抽取2張,求抽出的2張都為A的概率;(2)若甲已抽到了2張K后未放回,求乙抽到2張A的概率.參考答案:【考點(diǎn)】列舉法計(jì)算基本事件數(shù)及事件發(fā)生的概率.【分析】(1)甲從中任意抽取2張,基本事件總數(shù)n==66,抽出的2張都為A包含的基本事件個(gè)數(shù)m=,由此能求出抽出的2張都為A的概率.(2)甲已抽到了2張K后未放回,余下10張中抽出2張的方法有=45,抽出的兩張都是A的方法有,由此能求出乙抽到2張A的概率.【解答】解:(1)將撲克牌4種花色的A,K,Q共12張洗勻.甲從中任意抽取2張,基本事件總數(shù)n==66,抽出的2張都為A包含的基本事件個(gè)數(shù)m=,∴抽出的2張都為A的概率p==.(2)甲已抽到了2張K后未放回,余下10張中抽出2張的方法有=45,抽出的兩長(zhǎng)都是A的方法有,∴乙抽到2張A的概率p==.19.一輛汽車在某段路程中的行駛速度V與時(shí)間t的關(guān)系如右圖所示.

(Ⅰ)求圖中陰影部分的面積,并說明所求面積的實(shí)際含義;

(Ⅱ)假設(shè)這輛汽車的里程表在汽車行駛這段路程前的讀數(shù)為2012km,試建立行駛這段路程時(shí)汽車?yán)锍瘫淼淖x數(shù)Skm與時(shí)間th的函數(shù)解析式,并作出函數(shù)的圖象.參考答案:解:(Ⅰ)圖中陰影部分的面積為1×(50+80+90+70+60)=350km……2分

所求面積的實(shí)際含義是這輛汽車5h內(nèi)行駛的路程為350km;…5分

(Ⅱ)

……6分

…………………9分

故,

,…………10分

其圖象如下

…………14分

20.(本小題滿分12分)

要做一個(gè)體積為72cm3的長(zhǎng)方體帶蓋箱子,并且使長(zhǎng)寬之比為2:1,當(dāng)長(zhǎng)、寬、高分別為多少cm時(shí),箱子的表面積最???參考答案:設(shè)長(zhǎng)為2xcm.,寬為x,則高為,表面積為S在(0,+∞)內(nèi)只有一個(gè)極小值點(diǎn)x=3∴x=3時(shí),S最小=108∴長(zhǎng)、寬、高分別為6cm、3cm、4cm時(shí)箱子表面積最小略21.命題:“,”,命題:“,”,若“且”為假命題,求實(shí)數(shù)的取值范圍。參考答案:因?yàn)椤扒覟榧倜}”,所以與至少有一個(gè)為假命題。利用補(bǔ)集的思想,求出與都是真命題時(shí)的取值范圍,取反即可。真:則恒成立,又,所以;真:則,解得或。所以真且真時(shí),實(shí)數(shù)的取值范圍是或。取反可得:。所以“且為假命題”時(shí),的取值范圍為:。22.已知函數(shù)y=x3-3x2.(1)求函數(shù)的極小值;(2)求函數(shù)的遞

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論