版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
福建省福州市私立淘江中學(xué)2022-2023學(xué)年高二數(shù)學(xué)理下學(xué)期期末試卷含解析一、選擇題:本大題共10小題,每小題5分,共50分。在每小題給出的四個(gè)選項(xiàng)中,只有是一個(gè)符合題目要求的1.已知雙曲線﹣=1(a>0,b>0)的離心率e∈[,2],則一條漸近線與實(shí)軸所成角的取值范圍是()A. B. C. D.參考答案:C【考點(diǎn)】雙曲線的簡(jiǎn)單性質(zhì).【分析】由及c2=a2+b2,得的取值范圍,設(shè)一條漸近線與實(shí)軸所成的角為θ,可由tanθ=及0<θ<探求θ的取值范圍.【解答】解:∵e,∴2≤≤4,又∵c2=a2+b2,∴2≤≤4,即1≤≤3,得1≤≤.由題意知,為雙曲線的一條漸近線的方程,設(shè)此漸近線與實(shí)軸所成的角為θ,則,即1≤tanθ≤.∵0<θ<,∴≤θ≤,即θ的取值范圍是.故答案為:C.2.已知函數(shù),正實(shí)數(shù)、、滿足,若實(shí)數(shù)是函數(shù)的一個(gè)零點(diǎn),那么下列四個(gè)判斷:①;②;③;④.其中可能成立的個(gè)數(shù)為A.1
B.2
C.3
D.4參考答案:B略3.數(shù)列1,,,……,的前n項(xiàng)和為
(
)(A)
(B)
(C)
(D)參考答案:D略4.直線的斜率是(
)A.
B. C.
D.參考答案:A5.與橢圓共焦點(diǎn)且過點(diǎn)的雙曲線方程是
(
)A
B
C
D
參考答案:A6.如圖是一幾何體的三視圖(單位:cm),則這個(gè)幾何體的體積為(
)A.1cm3 B.3cm3 C.2cm3 D.6cm3參考答案:B【考點(diǎn)】由三視圖求面積、體積.【專題】計(jì)算題.【分析】三視圖復(fù)原的幾何體是放倒的三棱柱,根據(jù)三視圖的數(shù)據(jù),求出幾何體的體積即可.【解答】解:三視圖復(fù)原的幾何體是放倒的三棱柱,底面三角形是底邊為BC=2,高為1,三棱柱的高為AA′=3的三棱柱.所以三棱柱的體積為:=3cm3,故選B.【點(diǎn)評(píng)】本題考查幾何體的三視圖,幾何體的表面積的求法,準(zhǔn)確判斷幾何體的形狀是解題的關(guān)鍵.7.若橢圓的離心率,右焦點(diǎn)為F(c,0),方程ax2+2bx+c=0的兩個(gè)實(shí)數(shù)根分別是x1和x2,則點(diǎn)P(x1,x2)到原點(diǎn)的距離為(
)A. B. C.2 D.參考答案:A【考點(diǎn)】橢圓的簡(jiǎn)單性質(zhì);一元二次方程的根的分布與系數(shù)的關(guān)系;兩點(diǎn)間距離公式的應(yīng)用.【專題】計(jì)算題.【分析】利用一元二次方程根與系數(shù)的關(guān)系求出x1+x2和x1?x2的值,再利用橢圓的簡(jiǎn)單性質(zhì)求出P(x1,x2)到原點(diǎn)的距離.【解答】解:由題意知
x1+x2=﹣=﹣2,∴(x1+x2)2=4(1﹣e2)=3
①,x1?x2==
②,由①②解得x12+x22=2,故P(x1,x2)到原點(diǎn)的距離為=,故選A.【點(diǎn)評(píng)】本題考查一元二次方程根與系數(shù)的關(guān)系,兩點(diǎn)間的距離公式,橢圓的標(biāo)準(zhǔn)方程,以及橢圓的簡(jiǎn)單性質(zhì)的應(yīng)用.8.設(shè)為曲線:上的點(diǎn),且曲線在點(diǎn)處切線傾斜角的取值范圍為,則點(diǎn)橫坐標(biāo)的取值范圍為Ks5uA. B. C. D.
參考答案:A9.如圖是由哪個(gè)平面圖形旋轉(zhuǎn)得到的()參考答案:D略10.下列不等式證明過程正確的是(
)A.若,則
B.若,,則C.若,則
D.若,則參考答案:D對(duì)于A:a,b∈R,不滿足條件,對(duì)于B,x,y∈R+,lgx,lgy與0的關(guān)系無法確定,對(duì)于C:x為負(fù)實(shí)數(shù),則,故錯(cuò)誤,對(duì)于D:正確,故選D.
二、填空題:本大題共7小題,每小題4分,共28分11.兩個(gè)等差數(shù)列的前n項(xiàng)和分別是
參考答案:12.函數(shù)在處的切線方程是
.參考答案:函數(shù),求導(dǎo)得:,當(dāng)時(shí),,即在處的切線斜率為2.又時(shí),,所以切線為:,整理得:.
13.在區(qū)間上任取一個(gè)實(shí)數(shù),則的概率是
.參考答案:14.如下圖,在三角形中,,分別為,的中點(diǎn),為上的點(diǎn),且.若
,則實(shí)數(shù)
,實(shí)數(shù)
.參考答案:2,115.若曲線存在垂直于軸的切線,則實(shí)數(shù)的取值范圍是
。參考答案:略16.在直角坐標(biāo)系中任給一條直線,它與拋物線交于兩點(diǎn),則的取值范圍為________________.參考答案:17.(理,實(shí)驗(yàn)班)已知,則不等式x·f(x﹣1)<10的解集為______________。參考答案:三、解答題:本大題共5小題,共72分。解答應(yīng)寫出文字說明,證明過程或演算步驟18.設(shè)函數(shù)f(x)=x2+|x﹣2|﹣1,x∈R.(1)判斷函數(shù)f(x)的奇偶性;(2)求函數(shù)f(x)的最小值.參考答案:解:(1)f(x)=若f(x)奇函數(shù),則f(﹣x)=﹣f(x)所以f(0)=﹣f(0),即f(0)=0.∵f(0)=1≠0,∴f(x)不是R上的奇函數(shù).又∵f(1)=1,f(﹣1)=3,f(1)≠f(﹣1),∴f(x)不是偶函數(shù).故f(x)是非奇非偶的函數(shù).(2)當(dāng)x≥2時(shí),f(x)=x2+x﹣3,為二次函數(shù),對(duì)稱軸為直線x=,則f(x)為[2,+∞)上的增函數(shù),此時(shí)f(x)min=f(2)=3.當(dāng)x<2時(shí),f(x)=x2﹣x+1,為二次函數(shù),對(duì)稱軸為直線x=則f(x)在(﹣∞,)上為減函數(shù),在[,2)上為增函數(shù),此時(shí)f(x)min=f()=.綜上,f(x)min=.考點(diǎn): 函數(shù)奇偶性的判斷;函數(shù)的最值及其幾何意義.
分析: 本題第一問考查分段函數(shù)的奇偶性,用定義判斷;第二問是求最值的題目:求最值時(shí),先判斷函數(shù)在相應(yīng)定義域上的單調(diào)性,在根據(jù)單調(diào)性求出函數(shù)的最值.解答: 解:(1)f(x)=若f(x)奇函數(shù),則f(﹣x)=﹣f(x)所以f(0)=﹣f(0),即f(0)=0.∵f(0)=1≠0,∴f(x)不是R上的奇函數(shù).又∵f(1)=1,f(﹣1)=3,f(1)≠f(﹣1),∴f(x)不是偶函數(shù).故f(x)是非奇非偶的函數(shù).(2)當(dāng)x≥2時(shí),f(x)=x2+x﹣3,為二次函數(shù),對(duì)稱軸為直線x=,則f(x)為[2,+∞)上的增函數(shù),此時(shí)f(x)min=f(2)=3.當(dāng)x<2時(shí),f(x)=x2﹣x+1,為二次函數(shù),對(duì)稱軸為直線x=則f(x)在(﹣∞,)上為減函數(shù),在[,2)上為增函數(shù),此時(shí)f(x)min=f()=.綜上,f(x)min=.點(diǎn)評(píng): 函數(shù)的奇偶性是高考??嫉念}目,而出的題目一般比較簡(jiǎn)單,常用定義法判斷;函數(shù)的最值也是函數(shù)問題中??嫉念}目,一般先判斷函數(shù)的單調(diào)性,在求最值,而學(xué)生往往忽略了判斷單調(diào)性這一步19.點(diǎn)P(x0,y0)在橢圓C:=1上,且x0==sinβ,0<β<.直線l2與直線l1:y=1垂直,O為坐標(biāo)原點(diǎn),直線OP的傾斜角為α,直線l2的傾斜角為γ.(1)證明:點(diǎn)P是橢圓C:=1與直線l1的唯一公共點(diǎn);(2)證明:tanα,tanβ,tanγ構(gòu)成等比數(shù)列.參考答案:【考點(diǎn)】KL:直線與橢圓的位置關(guān)系.【分析】(1)聯(lián)立方程組,能證明點(diǎn)P是橢圓C:=1與直線l1的唯一公共點(diǎn).(2)利用等比中項(xiàng)法能證明tanα,tanβ,tanγ構(gòu)成等比數(shù)列.【解答】證明:(1)直線l1:y=1,得:y=,代入橢圓C:=1,得(+)+(﹣1)=0.將代入上式,得:,∴x=,∴方程組有唯一解,∴點(diǎn)P是橢圓C:=1與直線l1的唯一公共點(diǎn).(2)=tanβ,l1的斜率為﹣,l2的斜率為tanγ==tanβ,∴tanαtanγ=tan2β≠0,∴tanα,tanβ,tanγ構(gòu)成等比數(shù)列.【點(diǎn)評(píng)】本題考查直線與橢圓有唯一交點(diǎn)的證明,考查tanα,tanβ,tanγ構(gòu)成等比數(shù)列的證明,考查圓錐曲線、直線方程、等比數(shù)列等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.20.解關(guān)于x的不等式:mx2﹣(4m+1)x+4>0(m≥0)參考答案:【考點(diǎn)】一元二次不等式的解法.【專題】分類討論;分類法;不等式的解法及應(yīng)用.【分析】只需討論m=0、m>0時(shí),對(duì)應(yīng)不等式解集的情況,求出解集即可.【解答】解:當(dāng)m=0時(shí),不等式化為﹣x+4>0,解得x<4;當(dāng)m>0時(shí),不等式化為(mx﹣1)(x﹣4)>0,即(x﹣)(x﹣4)>0;若<4,則m>,解不等式得x<或x>4;若=4,則m=,不等式化為(x﹣4)2>0,解得x≠4;若>4,則m<,解不等式得x<4或x>;綜上,m=0時(shí),不等式的解集是{x|x<4};0<m<時(shí),不等式的解集是{x|x<4,或x>};m=時(shí),不等式的解集是{x|x≠4};m>時(shí),不等式的解集是{x|x<,或x>4}.【點(diǎn)評(píng)】本題考查了含有字母系數(shù)的不等式的解法與應(yīng)用問題,解題時(shí)應(yīng)對(duì)字母系數(shù)進(jìn)行分類討論,是易錯(cuò)題.21.(本小題滿分13分)一個(gè)暗箱里放著6個(gè)黑球、4個(gè)白球.(每個(gè)球的大小和質(zhì)量均相同)(1)不放回地依次取出2個(gè)球,若第1次取出的是白球,求第2次取到黑球的概率;(2)有放回地依次取出2個(gè)球,求兩球顏色不同的概率;(3)有放回地依次取出3個(gè)球,求至少取到兩個(gè)白球的概率.參考答案:解:(1)
(2)
(3)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 電熱馬甲商業(yè)機(jī)會(huì)挖掘與戰(zhàn)略布局策略研究報(bào)告
- 定制眼鏡鏡片行業(yè)營(yíng)銷策略方案
- 云環(huán)境監(jiān)測(cè)服務(wù)行業(yè)相關(guān)項(xiàng)目經(jīng)營(yíng)管理報(bào)告
- 心理咨詢行業(yè)市場(chǎng)調(diào)研分析報(bào)告
- 緩解昆蟲叮咬癥狀的藥物制劑市場(chǎng)分析及投資價(jià)值研究報(bào)告
- 失禁用護(hù)墊產(chǎn)品供應(yīng)鏈分析
- 關(guān)于退休的金融咨詢行業(yè)經(jīng)營(yíng)分析報(bào)告
- 可折疊自行車產(chǎn)品供應(yīng)鏈分析
- 廣告位租賃合同范本
- 建造波浪能發(fā)電廠行業(yè)經(jīng)營(yíng)分析報(bào)告
- 吉林省吉林市2025屆高三上學(xué)期一模歷史試卷
- 期中測(cè)試卷(1~4單元)(試題)-2024-2025學(xué)年數(shù)學(xué)六年級(jí)上冊(cè)北師大版
- 2016滬S204排水管道圖集
- 2024-2025學(xué)年小學(xué)勞動(dòng)五年級(jí)上冊(cè)人教版《勞動(dòng)教育》教學(xué)設(shè)計(jì)合集
- GB/T 22838.7-2024卷煙和濾棒物理性能的測(cè)定第7部分:卷煙含末率
- 期中試題-2024-2025學(xué)年統(tǒng)編版語文三年級(jí)上冊(cè)
- 2024年全國(guó)高考數(shù)學(xué)試題及解析答案(新課標(biāo)Ⅱ卷)
- 計(jì)算機(jī)應(yīng)用基礎(chǔ)課件教學(xué)
- 第四單元認(rèn)位置(單元測(cè)試)2024-2025學(xué)年一年級(jí)數(shù)學(xué)上冊(cè)蘇教版
- 《習(xí)作:筆尖流出的故事》教案-2024-2025學(xué)年六年級(jí)上冊(cè)語文統(tǒng)編版
- 2024年華僑、港澳、臺(tái)聯(lián)考高考數(shù)學(xué)試卷含答案
評(píng)論
0/150
提交評(píng)論