湖南省岳陽市九校2023年九年級數(shù)學第一學期期末考試試題含解析_第1頁
湖南省岳陽市九校2023年九年級數(shù)學第一學期期末考試試題含解析_第2頁
湖南省岳陽市九校2023年九年級數(shù)學第一學期期末考試試題含解析_第3頁
湖南省岳陽市九校2023年九年級數(shù)學第一學期期末考試試題含解析_第4頁
湖南省岳陽市九校2023年九年級數(shù)學第一學期期末考試試題含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

湖南省岳陽市九校2023年九年級數(shù)學第一學期期末考試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖所示是一個運算程序,若輸入的值為﹣2,則輸出的結果為()A.3 B.5 C.7 D.92.在△中,∠,如果,,那么cos的值為()A. B.C. D.3.已知關于x的一元二次方程有兩個實數(shù)根,則k的取值范圍是()A. B.且C.且 D.4.某次數(shù)學糾錯比賽共有道題目,每道題都答對得分,答錯或不答得分,全班名同學參加了此次競賽,他們的得分情況如下表所示:成績(分)人數(shù)則全班名同學的成績的中位數(shù)和眾數(shù)分別是()A., B., C.,70 D.,5.一塊矩形菜地的面積是120平方米,如果它的長減少2米,菜地就變成正方形,則原菜地的長是()A.10 B.12 C.13 D.146.某藥品經(jīng)過兩次降價,每瓶零售價由112元降為63元.已知兩次降價的百分率相同.要求每次降價的百分率,若設每次降價的百分率為x,則得到的方程為()A.112(1﹣x)2=63B.112(1+x)2=63C.112(1﹣x)=63D.112(1+x)=637.如圖,矩形ABCD中,E是AB的中點,將△BCE沿CE翻折,點B落在點F處,tan∠BCE=.設AB=x,△ABF的面積為y,則y與x的函數(shù)圖象大致為A. B.C. D.8.已知點(x1,y1),(x2,y2)是反比例函數(shù)y=圖象上的兩點,且0<x1<x2,則y1,y2的大小關系是()A.0<y1<y2 B.0<y2<y1 C.y1<y2<0 D.y2<y1<09.某數(shù)學興趣小組開展動手操作活動,設計了如圖所示的三種圖形,現(xiàn)計劃用鐵絲按照圖形制作相應的造型,則所用鐵絲的長度關系是()A.甲種方案所用鐵絲最長 B.乙種方案所用鐵絲最長C.丙種方案所用鐵絲最長 D.三種方案所用鐵絲一樣長:]10.如圖,在△ABC中,DE∥BC,=,DE=4cm,則BC的長為()A.8cm B.12cm C.11cm D.10cm11.如圖,⊙O的圓周角∠A=40°,則∠OBC的度數(shù)為()A.80° B.50° C.40° D.30°12.中,,若,,則的長為()A. B. C. D.5二、填空題(每題4分,共24分)13.如圖,在?ABCD中,AB=10,AD=6,AC⊥BC.則BD=_____.14.某海濱浴場有100個遮陽傘,每個每天收費10元時,可全部租出,若每個每天提高2元,則減少10個傘租出,若每個每天收費再提高2元,則再減少10個傘租出,以此類推,為了投資少而獲利大,每個遮陽傘每天應提高_______________。15.菱形的兩條對角線長分別是6和8,則菱形的邊長為_____.16.已知,則的值是_____.17.如圖,豎直放置的一個鋁合金窗框由矩形和弧形兩部分組成,AB=m,AD=2m,弧CD所對的圓心角為∠COD=120°.現(xiàn)將窗框繞點B順時針旋轉(zhuǎn)橫放在水平的地面上,這一過程中,窗框上的點到地面的最大高度為__m.18.在國家政策的宏觀調(diào)控下,某市的商品房成交均價由去年10月份的7000元/m2下降到12月份的5670元/m2,則11、12兩月平均每月降價的百分率是_____.三、解答題(共78分)19.(8分)已知二次函數(shù).用配方法將其化為的形式;在所給的平面直角坐標系xOy中,畫出它的圖象.20.(8分)已知在△ABC中,AB=BC,以AB為直徑的⊙O分別交AC于D,BC于E,連接ED.(1)求證:ED=DC;(2)若CD=6,EC=4,求AB的長.21.(8分)(1)計算:|﹣1|+2sin45°﹣+tan260°;(2)已知:,求.22.(10分)如圖,轉(zhuǎn)盤A的三個扇形面積相等,分別標有數(shù)字1,2,3,轉(zhuǎn)盤B的四個扇形面積相等,分別有數(shù)字1,2,3,1.轉(zhuǎn)動A、B轉(zhuǎn)盤各一次,當轉(zhuǎn)盤停止轉(zhuǎn)動時,將指針所落扇形中的兩個數(shù)字相乘(當指針落在四個扇形的交線上時,重新轉(zhuǎn)動轉(zhuǎn)盤).(1)用樹狀圖或列表法列出所有可能出現(xiàn)的結果;(2)求兩個數(shù)字的積為奇數(shù)的概率.23.(10分)如圖1是一種折疊臺燈,將其放置在水平桌面上,圖2是其簡化示意圖,測得其燈臂長為燈翠長為,底座厚度為根據(jù)使用習慣,燈臂的傾斜角固定為,(1)當轉(zhuǎn)動到與桌面平行時,求點到桌面的距離;(2)在使用過程中發(fā)現(xiàn),當轉(zhuǎn)到至時,光線效果最好,求此時燈罩頂端到桌面的高度(參考數(shù)據(jù):,結果精確到個位).24.(10分)已知關于x的方程x2+(2m+1)x+m(m+1)=1.(1)求證:方程總有兩個不相等的實數(shù)根;(2)已知方程的一個根為x=1,求代數(shù)式m2+m﹣5的值.25.(12分)某班“數(shù)學興趣小組”對函數(shù)的圖像和性質(zhì)進行了探究,探究過程如下,請補充完整.

(1)自變量的取值范圍是全體實數(shù),與的幾組對應值列表如下:其中,________________.(2)根據(jù)上表數(shù)據(jù),在如圖所示的平面直角坐標系中描點,并畫出了函數(shù)圖像的一部分,請畫出該圖像的另一部分;(3)觀察函數(shù)圖像,寫出兩條函數(shù)的性質(zhì);(4)進一步探究函數(shù)圖像發(fā)現(xiàn):①方程有______個實數(shù)根;②函數(shù)圖像與直線有_______個交點,所以對應方程有_____個實數(shù)根;③關于的方程有個實數(shù)根,的取值范圍是___________.26.如圖,矩形ABCD的對角線AC、BD交于點O,∠AOD=60°,AB=,AE⊥BD于點E,求OE的長.

參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)圖表列出算式,然后把x=-2代入算式進行計算即可得解.【詳解】解:把x=﹣2代入得:1﹣2×(﹣2)=1+4=1.故選:B.【點睛】此題考查代數(shù)式求值,解題關鍵在于掌握運算法則.2、A【分析】先利用勾股定理求出AB的長度,從而可求.【詳解】∵∠,,∴∴故選A【點睛】本題主要考查勾股定理及余弦的定義,掌握余弦的定義是解題的關鍵.3、C【分析】若一元二次方程有兩個實數(shù)根,則根的判別式△=b24ac≥1,建立關于k的不等式,求出k的取值范圍.還要注意二次項系數(shù)不為1.【詳解】解:∵一元二次方程有兩個實數(shù)根,∴,解得:,∵,∴k的取值范圍是且;故選:C.【點睛】本題考查了一元二次方程根的判別式的應用.切記不要忽略一元二次方程二次項系數(shù)不為零這一隱含條件.4、A【分析】根據(jù)中位數(shù)的定義把這組數(shù)據(jù)從小到大排列,求出最中間2個數(shù)的平均數(shù);根據(jù)眾數(shù)的定義找出出現(xiàn)次數(shù)最多的數(shù)即可.【詳解】把這組數(shù)據(jù)從小到大排列,最中間2個數(shù)的平均數(shù)是(70+80)÷2=75;

則中位數(shù)是75;

70出現(xiàn)了13次,出現(xiàn)的次數(shù)最多,則眾數(shù)是70;

故選:A.【點睛】本題考查了眾數(shù)和中位數(shù),中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到小)重新排列后,最中間的那個數(shù)(或最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù),注意眾數(shù)不止一個.5、B【分析】設原菜地的長為,根據(jù)正方形的性質(zhì)可得原矩形菜地的寬,再根據(jù)矩形的面積公式列出方程求解即可.【詳解】設原菜地的長為,則原矩形菜地的寬由題意得:解得:,(不合題意,舍去)故選:B【點睛】本題考查了一元二次方程的實際應用,依據(jù)題意正確建立方程是解題關鍵.6、A【解析】根據(jù)題意可得等量關系:原零售價×(1-百分比)(1-百分比)=降價后的售價,然后根據(jù)等量關系列出方程即可.【詳解】設每次降價的百分率為x,由題意得:112(1?x)2=63,故答案選:A.【點睛】本題考查的知識點是由實際問題抽象出一元二次方程,解題的關鍵是熟練的掌握由實際問題抽象出一元二次方程.7、D【解析】設AB=x,根據(jù)折疊,可證明∠AFB=90°,由tan∠BCE=,分別表示EB、BC、CE,進而證明△AFB∽△EBC,根據(jù)相似三角形面積之比等于相似比平方,表示△ABF的面積.【詳解】設AB=x,則AE=EB=x,由折疊,F(xiàn)E=EB=x,則∠AFB=90°,由tan∠BCE=,∴BC=x,EC=x,∵F、B關于EC對稱,∴∠FBA=∠BCE,∴△AFB∽△EBC,∴,∴y=,故選D.【點睛】本題考查了三角函數(shù),相似三角形,三角形面積計算,二次函數(shù)圖像等知識,利用相似三角形的性質(zhì)得出△ABF和△EBC的面積比是解題關鍵.8、B【分析】根據(jù)反比例函數(shù)的系數(shù)為5>0,在每一個象限內(nèi),y隨x的增大而減小的性質(zhì)進行判斷即可.【詳解】∵5>0,∴圖形位于一、三象限,在每一個象限內(nèi),y隨x的增大而減小,又∵0<x1<x2,∴0<y2<y1,故選:B.【點睛】本題主要考查反比例函數(shù)圖象上點的坐標特征.注意:反比例函數(shù)的增減性只指在同一象限內(nèi).9、D【解析】試題分析:解:由圖形可得出:甲所用鐵絲的長度為:2a+2b,乙所用鐵絲的長度為:2a+2b,丙所用鐵絲的長度為:2a+2b,故三種方案所用鐵絲一樣長.故選D.考點:生活中的平移現(xiàn)象10、B【分析】由平行可得=,再由條件可求得=,代入可求得BC.【詳解】解:∵DE∥BC,∴=,∵=,∴=,∴=,且DE=4cm,∴=,解得:BC=12cm,故選:B.【點睛】本題主要考查平行線分線段成比例的性質(zhì),掌握平行線分線段成比例中的對應線段成比例是解題的關鍵.11、B【分析】然后根據(jù)圓周角定理即可得到∠OBC的度數(shù),由OB=OC,得到∠OBC=∠OCB,根據(jù)三角形內(nèi)角和定理計算出∠OBC.【詳解】∵∠A=40°.

∴∠BOC=80°,

∵OB=OC,

∴∠OBC=∠OCB=50°,

故選:B.【點睛】本題考查了圓周角定理:一條弧所對的圓周角是它所對的圓心角的一半;也考查了等腰三角形的性質(zhì)以及三角形的內(nèi)角和定理.12、B【分析】根據(jù)題意,可得=,又由AB=4,代入即可得AC的值.【詳解】解:∵中,,,∴=.∴AC=AB==.故選B.【點睛】本題考查解直角三角形、勾股定理,解答本題的關鍵是明確題意,利用銳角三角函數(shù)和勾股定理解答.二、填空題(每題4分,共24分)13、4【分析】由BC⊥AC,AB=10,BC=AD=6,由勾股定理求得AC的長,得出OA長,然后由勾股定理求得OB的長即可.【詳解】解:∵四邊形ABCD是平行四邊形,∴BC=AD=6,OB=OD,OA=OC,∵AC⊥BC,∴AC==8,∴OC=4,∴OB==2,∴BD=2OB=4故答案為:4.【點睛】此題考查了平行四邊形的性質(zhì)以及勾股定理.此題難度適中,注意掌握數(shù)形結合思想的應用.14、4元或6元【分析】設每個遮陽傘每天應提高x元,每天獲得利潤為S,每個每天應收費(10+x)元,每天的租出量為(100-×10=100-5x)個,由此列出函數(shù)解析式即可解答.【詳解】解:設每個遮陽傘每天應提高x元,每天獲得利潤為S,由此可得,

S=(10+x)(100-×10),

整理得S=-5x2+50x+1000,

=-5(x-5)2+1125,

因為每天提高2元,則減少10個,所以當提高4元或6元的時候,獲利最大,

又因為為了投資少而獲利大,因此應提高6元;

故答案為:4元或6元.【點睛】此題考查運用每天的利潤=每個每天收費×每天的租出量列出函數(shù)解析式,進一步利用題目中實際條件解決問題.15、1【分析】根據(jù)菱形對角線垂直平分,再利用勾股定理即可求解.【詳解】解:因為菱形的對角線互相垂直平分,根據(jù)勾股定理可得菱形的邊長為=1.故答案為1.【點睛】此題主要考查菱形的邊長求解,解題的關鍵是熟知菱形的性質(zhì)及勾股定理的運用.16、【解析】因為已知,所以可以設:a=2k,則b=3k,將其代入分式即可求解.【詳解】∵,∴設a=2k,則b=3k,∴.故答案為.【點睛】本題考查分式的基本性質(zhì).17、()【分析】連接OB,過O作OH⊥BC于H,過O作ON⊥CD于N,根據(jù)已知條件求出OC和OB的長即可.【詳解】連接OB,過O作OH⊥BC于H,過O作ON⊥CD于N,∵∠COD=120°,CO=DO,∴∠OCD=∠ODC=30°,∵ON⊥CO,∴CN=DN=CD=AB=m,∴ON=CN=m,OC=1m,∵ON⊥BC,∴四邊形OHCN是矩形,∴CH=ON=m,OH=CN=m,∴BH=BC-CH=m,∴OB==m,∴在這一過程中,窗框上的點到地面的最大高度為(+1)m,故答案為:(+1).【點睛】本題考查了垂徑定理,矩形的性質(zhì)和判定,勾股定理,掌握知識點是解題關鍵.18、10%【分析】設11、12兩月平均每月降價的百分率是x,那么11月份的房價為7000(1?x),12月份的房價為7000(1?x)2,然后根據(jù)12月份的價格即可列出方程解決問題.【詳解】解:設11、12兩月平均每月降價的百分率是x,由題意,得:7000(1﹣x)2=5670,解得:x1=0.1=10%,x2=1.9(不合題意,舍去).故答案為:10%.【點睛】本題是一道一元二次方程的應用題,與實際生活結合比較緊密,正確理解題意,找到關鍵的數(shù)量關系,然后列出方程是解題的關鍵.三、解答題(共78分)19、(1);(2)見解析.【分析】(1)利用配方法把二次函數(shù)解析式化成頂點式即可;(2)利用描點法畫出二次函數(shù)圖象即可.【詳解】解:==,頂點坐標為,對稱軸方程為.函數(shù)二次函數(shù)的開口向上,頂點坐標為,與x軸的交點為,,其圖象為:故答案為(1);(2)見解析.【點睛】本題考查二次函數(shù)的配方法,用描點法畫二次函數(shù)的圖象,掌握配方法是解題的關鍵.20、(1)證明見解析;(2)AB=6.【分析】(1)根據(jù)圓內(nèi)接四邊形的性質(zhì)得出∠DEC=∠A,根據(jù)等腰三角形的性質(zhì)得出∠A=∠C,求出∠DEC=∠C,根據(jù)等腰三角形的判定得出即可;

(2)連接BD,根據(jù)圓周角定理求出∠ADB=90°,根據(jù)等腰三角形的性質(zhì)求出AC長,再求出△DEC∽△BAC,得出比例式,即可求出答案.【詳解】(1)證明:∵A、B、E、D四點共圓,∴∠DEC=∠A,∵AB=BC,∴∠A=∠C,∴∠DEC=∠C,∴ED=DC;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,即BD⊥AC,∵AB=BC,CD=6,∴AD=DC=6,∴AC=12,∵∠A=∠DEC,∠C=∠C,∴△DEC∽△BAC,∴,∴,解得:BC=6,∵AB=BC,∴AB=6.【點睛】本題考查了圓內(nèi)接四邊形的性質(zhì),圓周角定理,相似三角形的性質(zhì)和判定,等腰三角形的判定和性質(zhì)等知識點,能綜合運用定理進行推理是解此題的關鍵.21、(1)2;(2)【分析】(1)利用絕對值的意義、特殊角的三角函數(shù)值和二次根式的性質(zhì)進行計算,再合并即可;

(2)先根據(jù)分式的除法將所求式子進行變形,再將已知式子的值代入即可得出結果.【詳解】解:(1)原式=﹣1+2×﹣2+()2=﹣1+﹣2+3=2;(2)∵,∴.【點睛】本題考查了特殊角的三角函數(shù)值、二次根式的混合運算以及比例的性質(zhì)和分式的除法法則,掌握基本運算法則,能靈活運用比例的性質(zhì)進行變形是解此題的關鍵.22、(1)結果見解析;(2)13【解析】解:(1)畫樹狀圖得:則共有12種等可能的結果;(2)∵兩個數(shù)字的積為奇數(shù)的1種情況,∴兩個數(shù)字的積為奇數(shù)的概率為:412試題分析:(1)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果;(2)由兩個數(shù)字的積為奇數(shù)的情況,再利用概率公式即可求得答案.23、(1)點到桌面的距離為;(2)燈罩頂端到桌面的高度約為.【分析】(1)作CM⊥EF于M,BP⊥AD于P,交EF于N,則CM=BN,PN=3,由直角三角形的性質(zhì)得出AP=AB=14,BP=AP=14,得出CM=BN=BP+PN=14+3即可;(2)作CM⊥EF于M,作BQ⊥CM于Q,BP⊥AD于P,交EF于N,則∠QBN=90°,CM=BN,PN=3,由(1)得QM=BN,求出∠CBQ=25,由三角函數(shù)得出CQ=BC×sin25,得出CM=CQ+QM即可.【詳解】解當轉(zhuǎn)動到與桌面平行時,如圖2所示:作于于,交于則,即點到桌面的距離為;作于,作于于,交于,如圖3所示:則,由得,在中,,即此時燈罩頂端到桌面的高度約為.【點睛】本題考查了解直角三角形、翻折變換的性質(zhì)、含30角的直角三角形的性質(zhì)等知識;通過作輔助線構造直角三角形是解題的關鍵.24、(1)方程總有兩個不相等的實數(shù)根;(2)-2.【分析】(1)根據(jù)一元二次方程的根的判別式即可得出△=1>1,由此即可證出方程總有兩個不相等的實數(shù)根;

(2)將x=1代入原方程求出m的值,再將m值代入代數(shù)式中求值即可.【詳解】解:(1)∵關于x的一元二次方程x2+(2m+1)x+m(m+1)=1.∴△=(2m+1)2﹣4m(m+1)=1>1,∴方程總有兩個不相等的實數(shù)根;(2)∵x=1是此方程的一個根,∴把x=1代入方程中得到m(m

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論