江蘇省東臺市第二教育聯(lián)盟2023年數(shù)學九上期末調(diào)研試題含解析_第1頁
江蘇省東臺市第二教育聯(lián)盟2023年數(shù)學九上期末調(diào)研試題含解析_第2頁
江蘇省東臺市第二教育聯(lián)盟2023年數(shù)學九上期末調(diào)研試題含解析_第3頁
江蘇省東臺市第二教育聯(lián)盟2023年數(shù)學九上期末調(diào)研試題含解析_第4頁
江蘇省東臺市第二教育聯(lián)盟2023年數(shù)學九上期末調(diào)研試題含解析_第5頁
已閱讀5頁,還剩19頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

江蘇省東臺市第二教育聯(lián)盟2023年數(shù)學九上期末調(diào)研試題注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每題4分,共48分)1.下列事件中,屬于必然事件的是()A.明天我市下雨B.拋一枚硬幣,正面朝下C.購買一張福利彩票中獎了D.擲一枚骰子,向上一面的數(shù)字一定大于零2.方程x=x(x-1)的根是()A.x=0 B.x=2 C.x1=0,x2=1 D.x1=0,x2=23.下列方程中,沒有實數(shù)根的是()A. B. C. D.4.為了讓人們感受丟棄塑料袋對環(huán)境造成的影響,某班環(huán)保小組的6名同學記錄了自己家中一周內(nèi)丟棄塑料袋的數(shù)量,結果如下:(單位:個)33,25,28,26,25,31,如果該班有45名學生,那么根據(jù)提供的數(shù)據(jù)估計本周全班同學各家總共丟棄塑料袋的數(shù)量為()A.900個 B.1080個 C.1260個 D.1800個5.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個結論:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的實數(shù)).其中正確的結論有()A.2個 B.3個 C.4個 D.5個6.已知點A(-2,m),B(2,m),C(3,m﹣n)(n>0)在同一個函數(shù)的圖象上,這個函數(shù)可能是()A.y=x B.y=﹣ C.y=x2 D.y=﹣x27.如圖,AB是半圓O的直徑,半徑OC⊥AB于O,AD平分∠CAB交于點D,連接CD,OD,BD.下列結論中正確的是()A.AC∥OD B.C.△ODE∽△ADO D.8.拋物線y=﹣(x+2)2﹣3的頂點坐標是()A.(2,﹣3) B.(﹣2,3) C.(2,3) D.(﹣2,﹣3)9.如圖,在△ABC中,E,G分別是AB,AC上的點,∠AEG=∠C,∠BAC的平分線AD交EG于點F,若,則()A. B. C. D.10.下面四個圖案分別是步行標志、禁止行人通行標志、禁止駛入標志和直行標志,其中既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.11.如圖,正六邊形的邊長是1cm,則線段AB和CD之間的距離為()A.2cm B.cm C.cm D.1cm12.若,則代數(shù)式的值()A.-1 B.3 C.-1或3 D.1或-3二、填空題(每題4分,共24分)13.定義:如果一元二次方程ax2+bx+c=1(a≠1)滿足a+b+c=1.那么我們稱這個方程為“鳳凰”方程,已知ax2+bx+c=1(a≠1)是“鳳凰”方程,且有兩個相等的實數(shù)根,則下列結論:①a=c,②a=b,③b=c,④a=b=c,正確的是_____(填序號).14.已知拋物線經(jīng)過和兩點,則的值為__________.15.若關于的一元二次方程有實數(shù)根,則的取值范圍是_________.16.拋物線y=2(x﹣1)2﹣5的頂點坐標是_____.17.已知,且,且與的周長和為175,則的周長為_________.18.如圖,在平面直角坐標系中,為線段上任一點,作交線段于,當?shù)拈L最大時,點的坐標為_________.三、解答題(共78分)19.(8分)如圖,是的弦,為半徑的中點,過作交弦于點,交于點,且.(1)求證:是的切線;(2)連接、,求的度數(shù):(3)如果,,,求的半徑.20.(8分)在一個不透明的布袋里裝有4個標有1,2,3,4的小球,它們的形狀、大小、質地完全相同,小李從布袋里隨機取出一個小球,記下數(shù)字為x,小張在剩下的3個小球中隨機取出一個小球,記下數(shù)字為y,這樣確定了點Q的坐標(x,y).(1)畫樹狀圖或列表,寫出點Q所有可能的坐標;(2)求點Q(x,y)在函數(shù)y=﹣x+5圖象上的概率.21.(8分)當今,越來越多的青少年在觀看影片《流浪地球》后,更加喜歡同名科幻小說,該小說銷量也急劇上升.書店為滿足廣大顧客需求,訂購該科幻小說若干本,每本進價為20元.根據(jù)以往經(jīng)驗:當銷售單價是25元時,每天的銷售量是250本;銷售單價每上漲1元,每天的銷售量就減少10本,書店要求每本書的利潤不低于10元且不高于18元.(1)直接寫出書店銷售該科幻小說時每天的銷售量(本)與銷售單價(元)之間的函數(shù)關系式及自變量的取值范圍.(2)書店決定每銷售1本該科幻小說,就捐贈元給困難職工,每天扣除捐贈后可獲得最大利潤為1960元,求的值.22.(10分)一次函數(shù)與反比例函數(shù)的圖象相交于A(﹣1,4),B(2,n)兩點,直線AB交x軸于點D.(1)求一次函數(shù)與反比例函數(shù)的表達式;(2)過點B作BC⊥y軸,垂足為C,連接AC交x軸于點E,求△AED的面積S.23.(10分)在美化校園的活動中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用26m長的籬笆圍成一個矩形花園ABCD(籬笆只圍AB,BC兩邊),設BC=xm.(1)若矩形花園ABCD的面積為165m2,求x的值;(2)若在P處有一棵樹,樹中心P與墻CD,AD的距離分別是13m和6m,要將這棵樹圍在花園內(nèi)(考慮到樹以后的生長,籬笆圍矩形ABCD時,需將以P為圓心,1為半徑的圓形區(qū)域圍在內(nèi)),求矩形花園ABCD面積S的最大值.24.(10分)如圖,在菱形ABCD中,對角線AC與BD相交于點M,已知BC=5,點E在射線BC上,tan∠DCE=,點P從點B出發(fā),以每秒2個單位沿BD方向向終點D勻速運動,過點P作PQ⊥BD交射線BC于點O,以BP、BQ為鄰邊構造?PBQF,設點P的運動時間為t(t>0).(1)tan∠DBE=;(2)求點F落在CD上時t的值;(3)求?PBQF與△BCD重疊部分面積S與t之間的函數(shù)關系式;(4)連接?PBQF的對角線BF,設BF與PQ交于點N,連接MN,當MN與△ABC的邊平行(不重合)或垂直時,直接寫出t的值.25.(12分)用配方法解方程:x2﹣8x+1=026.在不透明的袋子中有四張標有數(shù)字1,2,3,4的卡片,小明、小華兩人按照各自的規(guī)則玩抽卡片游戲.小明畫出樹形圖如下:小華列出表格如下:第一次

第二次

1

2

3

4

1

(1,1)

(2,1)

(3,1)

(4,1)

2

(1,2)

(2,2)

(4,2)

3

(1,3)

(2,3)

(3,3)

(4,3)

4

(1,4)

(2,4)

(3,4)

(4,4)

回答下列問題:(1)根據(jù)小明畫出的樹形圖分析,他的游戲規(guī)則是:隨機抽出一張卡片后(填“放回”或“不放回”),再隨機抽出一張卡片;(2)根據(jù)小華的游戲規(guī)則,表格中①表示的有序數(shù)對為;(3)規(guī)定兩次抽到的數(shù)字之和為奇數(shù)的獲勝,你認為淮獲勝的可能性大?為什么?

參考答案一、選擇題(每題4分,共48分)1、D【分析】根據(jù)定義進行判斷.【詳解】解:必然事件就是一定發(fā)生的事件,隨機事件是可能發(fā)生也可能不發(fā)生的事件,由必然事件和隨機事件的定義可知,選項A,B,C為隨機事件,選項D是必然事件,故選D.【點睛】本題考查必然事件和隨機事件的定義.2、D【詳解】解:先移項,再把方程左邊分解得到x(x﹣1﹣1)=0,原方程化為x=0或x﹣1﹣1=0,解得:x1=0;x2=2故選D.【點睛】本題考查因式分解法解一元二次方程,掌握因式分解的技巧進行計算是解題關鍵.3、D【分析】要判定所給方程根的情況,只要分別求出它們的判別式,然后根據(jù)判別式的正負情況即可作出判斷.沒有實數(shù)根的一元二次方程就是判別式的值小于0的方程.【詳解】解:A、x2+x=0中,△=b2-4ac=1>0,有實數(shù)根;

B、x2-2=0中,△=b2-4ac=8>0,有實數(shù)根;

C、x2+x-1=0中,△=b2-4ac=5>0,有實數(shù)根;

D、x2-x+1=0中,△=b2-4ac=-3,沒有實數(shù)根.

故選D.【點睛】本題考查一元二次方程根判別式△:即(1)△>0?方程有兩個不相等的實數(shù)根;(2)△=0?方程有兩個相等的實數(shù)根;(3)△<0?方程沒有實數(shù)根.4、C【分析】先求出6名同學家丟棄塑料袋的平均數(shù)量作為全班學生家的平均數(shù)量,然后乘以總人數(shù)45即可解答.【詳解】估計本周全班同學各家總共丟棄塑料袋的數(shù)量為(個).【點睛】本題考查了用樣本估計總體的問題,掌握算術平均數(shù)的公式是解題的關鍵.5、A【分析】觀察圖象:開口向下得到a<0;對稱軸在y軸的右側得到a、b異號,則b>0;拋物線與y軸的交點在x軸的上方得到c>0,所以abc<0;當x=﹣1時圖象在x軸上得到y(tǒng)=a﹣b+c=0,即a+c=b;對稱軸為直線x=1,可得x=2時圖象在x軸上方,則y=4a+2b+c>0;利用對稱軸x=﹣=1得到a=﹣b,而a﹣b+c<0,則﹣b﹣b+c<0,所以2c<3b;開口向下,當x=1,y有最大值a+b+c,得到a+b+c>am2+bm+c,即a+b>m(am+b)(m≠1).【詳解】解:開口向下,a<0;對稱軸在y軸的右側,a、b異號,則b>0;拋物線與y軸的交點在x軸的上方,c>0,則abc<0,所以①不正確;當x=﹣1時圖象在x軸上,則y=a﹣b+c=0,即a+c=b,所以②不正確;對稱軸為直線x=1,則x=2時圖象在x軸上方,則y=4a+2b+c>0,所以③正確;x=﹣=1,則a=﹣b,而a﹣b+c=0,則﹣b﹣b+c=0,2c=3b,所以④不正確;開口向下,當x=1,y有最大值a+b+c;當x=m(m≠1)時,y=am2+bm+c,則a+b+c>am2+bm+c,即a+b>m(am+b)(m≠1),所以⑤正確.故選:A.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關系:對于二次函數(shù)y=ax2+bx+c(a≠0)的圖象,當a>0,開口向上,函數(shù)有最小值,a<0,開口向下,函數(shù)有最大值;對稱軸為直線x=,a與b同號,對稱軸在y軸的左側,a與b異號,對稱軸在y軸的右側;當c>0,拋物線與y軸的交點在x軸的上方;當△=b2-4ac>0,拋物線與x軸有兩個交點.6、D【分析】可以采用排除法得出答案,由點A(-2,m),B(2,m)關于y軸對稱,于是排除選項A、B;再根據(jù)B(2,m),C(3,m﹣n)(n>0)的特點和二次函數(shù)的性質,可知拋物線在對稱軸的右側呈下降趨勢,所以拋物線的開口向下,即a<0.【詳解】解:∵A(-2,m),B(2,m)關于y軸對稱,且在同一個函數(shù)的圖像上,

而,的圖象關于原點對稱,∴選項A、B錯誤,只能選C、D,,

;

∵,在同一個函數(shù)的圖像上,而y=x2在y軸右側呈上升趨勢,∴選項C錯誤,而D選項符合題意.故選:D.【點睛】本題考查正比例函數(shù)、反比例函數(shù)、二次函數(shù)的圖象和性質,熟悉各個函數(shù)的圖象和性質是解題的基礎,發(fā)現(xiàn)點的坐標關系是解題的關鍵.7、A【分析】A.根據(jù)等腰三角形的性質和角平分線的性質,利用等量代換求證∠CAD=∠ADO即可;

B.過點E作EF⊥AC,根據(jù)角平分線上的點到角的兩邊的距離相等可得OE=EF,再根據(jù)直角三角形斜邊大于直角邊可證;

C.兩三角形中,只有一個公共角的度數(shù)相等,其它兩角不相等,所以不能證明③△ODE∽△ADO;

D.根據(jù)角平分線的性質得出∠CAD=∠BAD,根據(jù)在同圓或等圓中,相等的圓周角所對的弦相等,可得CD=BD,又因為CD+BD>BC,又由AC=BC可得AC<2CD,從而可判斷D錯誤.【詳解】解:解:A.∵AB是半圓直徑,

∴AO=OD,

∴∠OAD=∠ADO,

∵AD平分∠CAB交弧BC于點D,

∴∠CAD=∠DAO=∠CAB,

∴∠CAD=∠ADO,

∴AC∥OD,

∴A正確.

B.如圖,過點E作EF⊥AC,

∵OC⊥AB,AD平分∠CAB交弧BC于點D,

∴OE=EF,

在Rt△EFC中,CE>EF,

∴CE>OE,

∴B錯誤.

C.∵在△ODE和△ADO中,只有∠ADO=∠EDO,

∵∠COD=2∠CAD=2∠OAD,

∴∠DOE≠∠DAO,

∴不能證明△ODE和△ADO相似,

∴C錯誤;D.∵AD平分∠CAB交于點D,∴∠CAD=∠BAD.∴CD=BD∴BC<CD+BD=2CD,∵半徑OC⊥AB于O,∴AC=BC,∴AC<2CD,∴D錯誤.故選A.【點睛】本題主要考查相似三角形的判定與性質,圓心角、弧、弦的關系,圓周角定理,等腰三角形的性質,三角形內(nèi)角和定理等知識點的靈活運用,此題步驟繁瑣,但相對而言,難易程度適中,很適合學生的訓練.8、D【解析】試題分析:∵拋物線y=﹣(x+2)2﹣3為拋物線解析式的頂點式,∴拋物線頂點坐標是(﹣2,﹣3).故選D.考點:二次函數(shù)的性質.9、C【分析】根據(jù)兩組對應角相等可判斷△AEG∽△ACB,△AEF∽△ACD,再得出線段間的比例關系進行計算即可得出結果.【詳解】解:(1)∵∠AEG=∠C,∠EAG=∠BAC,

∴△AEG∽△ACB.

∴.

∵∠EAF=∠CAD,∠AEF=∠C,

∴△AEF∽△ACD.

∴又,∴.∴故選C.【點睛】本題考查了相似三角形的判定,解答本題,要找到兩組對應角相等,再利用相似的性質求線段的比值.10、C【分析】根據(jù)軸對稱圖形和中心對稱圖形的定義,即可得出答案.【詳解】A.不是軸對稱圖形,也不是中心對稱圖形;B.不是軸對稱圖形,也不是中心對稱圖形;C.是軸對稱圖形,也是中心對稱圖形;D.是軸對稱圖形,不是中心對稱圖形.故選:C.【點睛】軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.11、B【分析】連接AC,過E作EF⊥AC于F,根據(jù)正六邊形的特點求出∠AEC的度數(shù),再由等腰三角形的性質求出∠EAF的度數(shù),由特殊角的三角函數(shù)值求出AF的長,進而可求出AC的長.【詳解】如圖,連接AC,過E作EF⊥AC于F,∵AE=EC,∴△AEC是等腰三角形,∴AF=CF,∵此多邊形為正六邊形,∴∠AEC==120°,∴∠AEF==60°,∴∠EAF=30°,∴AF=AE×cos30°=1×=,∴AC=,故選:B.【點睛】本題考查了正多邊形的應用,等腰三角形的性質和銳角三角函數(shù),掌握知識點是解題關鍵.12、B【分析】利用換元法解方程即可.【詳解】設=x,原方程變?yōu)椋?,解得x=3或-1,∵≥0,∴故選B.【點睛】本題考查了用換元法解一元二次方程,設=x,把原方程轉化為是解題的關鍵.二、填空題(每題4分,共24分)13、①【分析】由方程有兩個相等的實數(shù)根,得到根的判別式等于1,再由a+b+c=1,把表示出b代入根的判別式中,變形后即可得到a=c.【詳解】解:∵方程有兩個相等實數(shù)根,且a+b+c=1,∴b2﹣4ac=1,b=﹣a﹣c,將b=﹣a﹣c代入得:a2+2ac+c2﹣4ac=(a﹣c)2=1,則a=c.故答案為:①.【點睛】此題考查了根的判別式,以及一元二次方程的解,一元二次方程中根的判別式大于1,方程有兩個不相等的實數(shù)根;根的判別式等于1,方程有兩個相等的實數(shù)根;根的判別式小于1,方程無解.14、【分析】根據(jù)(-2,n)和(1,n)可以確定函數(shù)的對稱軸x=1,再由對稱軸的x=,即可求出b,于是可求n的值.【詳解】解:拋物線經(jīng)過(-2,n)和(1,n)兩點,可知函數(shù)的對稱軸x=1,

∴=1,

∴b=2;

∴y=-x2+2x+1,

將點(-2,n)代入函數(shù)解析式,可得n=-1;

故答案是:-1.【點睛】本題考查二次函數(shù)圖象上點的坐標;熟練掌握二次函數(shù)圖象上點的對稱性是解題的關鍵.15、,但【分析】根據(jù)一元二次方程根的判別式,即可求出答案.【詳解】解:∵一元二次方程有實數(shù)根,∴,解得:;∵是一元二次方程,∴,∴的取值范圍是,但.故答案為:,但.【點睛】本題考查根的判別式,解題的關鍵是熟練運用根的判別式,本題屬于基礎題型.16、(1,﹣5)【分析】根據(jù)二次函數(shù)的頂點式即可求解.【詳解】解:拋物線y=2(x﹣1)2﹣5的頂點坐標是(1,﹣5).故答案為(1,﹣5).【點睛】本題考查了頂點式對應的頂點坐標,頂點式的理解是解題的關鍵17、1【分析】根據(jù)相似三角形的性質得△ABC的周長:△DEF的周長=3:4,然后根據(jù)與的周長和為11即可計算出△ABC的周長.【詳解】解:∵△ABC與△DEF的面積比為9:16,∴△ABC與△DEF的相似比為3:4,

∴△ABC的周長:△DEF的周長=3:4,∵與的周長和為11,

∴△ABC的周長=×11=1.

故答案是:1.【點睛】本題考查了相似三角形的性質:相似三角形(多邊形)的周長的比等于相似比;相似三角形的面積的比等于相似比的平方.18、(3,)【分析】根據(jù)勾股定理求出AB,由DE⊥BD,取BE的中點F,以點F為圓心,BF長為半徑作半圓,與x軸相切于點D,連接FD,設AE=x,利用相似三角形求出x,再根據(jù)三角形相似求出點E的橫縱坐標即可.【詳解】∵A(4,0),B(0,3),∴OA=4,OB=3,∴AB=5,∵DE⊥BD,∴∠BDE=90°,取BE的中點F,以點F為圓心,BF長為半徑作半圓,與x軸相切于點D,連接FD,設AE=x,則BF=EF=DF=,∵∠ADF=∠AOB=90°,∴DF∥OB∴△ADF∽△AOB∴∴,解得x=,過點E作EG⊥x軸,∴EG∥OB,∴△AEG∽△ABO,∴,∴,∴EG=,AG=1,∴OG=OA-AG=4-1=3,∴E(3,),故答案為:(3,).【點睛】此題考查圓周角定理,相似三角形的判定及性質,勾股定理,本題借助半圓解題使題中的DE⊥BD所成的角確定為圓周角,更容易理解,是解此題的關鍵.三、解答題(共78分)19、(1)證明見解析;(2)30°;(3).【分析】(1)連接OB,由圓的半徑相等和已知條件證明∠OBC=90°,即可證明BC是⊙O的切線;(2)連接OF,AF,BF,首先證明△OAF是等邊三角形,再利用圓周角定理:同弧所對的圓周角是所對圓心角的一半即可求出∠ABF的度數(shù);(3)作CG⊥BE于G,如圖,利用等腰三角形的性質得BG=5,再證明∠OAB=∠ECG,則sin∠ECG=sin∠OAB=,于是可計算出CE=13,從而得到DE=2,由,得,,即可求出的半徑.【詳解】連接.,,,,又.,,,是的切線;(2)連接OF,AF,BF,,,,又,是等邊三角形,,.(3)過點作于,,,,∴,在中,,sin∠ECG=sin∠OAB=,,,又,.由,得:,,的半徑為.【點睛】此題考查了切線的判定,以及相似三角形的判定與性質,熟練掌握相似三角形的判定與性質是解本題的關鍵.20、(1)畫樹狀圖或列表見解析;(2).【解析】試題分析:根據(jù)題意列出表格,找出所有的點Q坐標,根據(jù)函數(shù)上的點的特征得出符合條件的點,根據(jù)概率的計算方法進行計算.試題解析:(1)列表得:(x,y)

1

2

3

4

1

(1,2)

(1,3)

(1,4)

2

(2,1)

(2,3)

(2,4)

3

(3,1)

(3,2)

(3,4)

4

(4,1)

(4,2)

(4,3)

點Q所有可能的坐標有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12種;(2)∵共有12種等可能的結果,其中在函數(shù)y=﹣x+6圖象上的有2種,即:(2,4),(4,2),∴點P(x,y)在函數(shù)y=﹣x+6圖象上的概率為:P=.考點:概率的計算.21、(1);(1).【解析】(1)根據(jù)題意列函數(shù)關系式即可;

(1)設每天扣除捐贈后可獲得利潤為w元.根據(jù)題意得到w=(x-10-a)(-10x+500)=-10x1+(10a+700)x-500a-10000(30≤x≤38)求得對稱軸為x=35+a,且0<a≤6,則30<35+a≤38,則當時,取得最大值,解方程得到a1=1,a1=58,于是得到a=1.【詳解】解:(1)根據(jù)題意得,;(1)設每天扣除捐贈后可獲得利潤為元.對稱軸為x=35+a,且0<a≤6,則30<35+a≤38,則當時,取得最大值,∴∴(不合題意舍去),∴.【點睛】本題考查了二次函數(shù)的應用,難度較大,最大銷售利潤的問題常利用函數(shù)的增減性來解答,正確的理解題意,確定變量,建立函數(shù)模型.22、(1),;(2).【分析】(1)把A(﹣1,4)代入反比例函數(shù)可得m的值,再把B(2,n)代入反比例函數(shù)的解析式得到n的值;然后利用待定系數(shù)法確定一次函數(shù)的解析式;(2)由BC⊥y軸,垂足為C以及B點坐標確定C點坐標,可求出直線AC的解析式,進一步求出點E的坐標,然后計算得出△AED的面積S.【詳解】解:(1)把A(﹣1,4)代入反比例函數(shù)得,m=﹣1×4=﹣4,所以反比例函數(shù)的解析式為,把B(2,n)代入得,2n=﹣4,解得n=﹣2,所以B點坐標為(2,﹣2),把A(﹣1,4)和B(2,﹣2)代入一次函數(shù),得:,解得:,所以一次函數(shù)的解析式為;(2)∵BC⊥y軸,垂足為C,B(2,﹣2),∴C點坐標為(0,﹣2).設直線AC的解析式為,∵A(﹣1,4),C(0,﹣2),∴,解得:,∴直線AC的解析式為,當y=0時,﹣6x﹣2=0,解答x=,∴E點坐標為(,0),∵直線AB的解析式為,∴直線AB與x軸交點D的坐標為(1,0),∴DE=,∴△AED的面積S==.【點睛】本題考查1.反比例函數(shù)與一次函數(shù)的交點問題;2.綜合題,利用數(shù)形結合思想解題是關鍵.23、(1)x的值為11m或15m;(2)花園面積S的最大值為168平方米.【分析】(1)直接利用矩形面積公式結合一元二次方程的解法即可求得答案;(2)首先得到S與x的關系式,進而利用二次函數(shù)的增減性即可求得答案.【詳解】(1)∵AB=xm,則BC=(26﹣x)m,∴x(26﹣x)=165,解得:x1=11,x2=15,答:x的值為11m或15m;(2)由題意可得出:S=x(26﹣x)=﹣x2+26x=﹣(x﹣13)2+169,由題意得:14≤x≤19,∵-1<0,14≤x≤19,∴S隨著x的增大而減小,∴x=14時,S取到最大值為:S=﹣(14﹣13)2+169=168,答:花園面積S的最大值為168平方米.【點睛】本題考查了二次函數(shù)的應用以及一元二次方程的解法,正確結合二次函數(shù)的增減性求得最值是解題的關鍵.24、(1);(1)t=;(3)見解析;(4)t的值為或或或1.【分析】(1)如圖1中,作DH⊥BE于H.解直角三角形求出BH,DH即可解決問題.(1)如圖1中,由PF∥CB,可得,由此構建方程即可解決問題.(3)分三種情形:如圖3-1中,當時,重疊部分是平行四邊形PBQF.如圖3-1中,當時,重疊部分是五邊形PBQRT.如圖3-3中,當1<t≤1時,重疊部分是四邊形PBCT,分別求解即可解決問題.

(4)分四種情形:如圖4-1中,當MN∥AB時,設CM交BF于T.如圖4-1中,當MN⊥BC時.如圖4-3中,當MN⊥AB時.當點P與點D重合時,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論