版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
江蘇省無錫新吳區(qū)2023-2024學(xué)年數(shù)學(xué)九年級第一學(xué)期期末綜合測試模擬試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.用頻率估計概率,可以發(fā)現(xiàn),某種幼樹在一定條件下移植成活的概率為0.9,下列說法正確的是(
)A.種植10棵幼樹,結(jié)果一定是“有9棵幼樹成活”B.種植100棵幼樹,結(jié)果一定是“90棵幼樹成活”和“10棵幼樹不成活”C.種植10n棵幼樹,恰好有“n棵幼樹不成活”D.種植n棵幼樹,當n越來越大時,種植成活幼樹的頻率會越來越穩(wěn)定于0.92.若二次函數(shù)的x與y的部分對應(yīng)值如下表,則當時,y的值為xy353A.5 B. C. D.3.在矩形中,的角平分線與交于點,的角平分線與交于點,若,,則的長為()A. B. C. D.4.如圖,我國傳統(tǒng)文化中的“福祿壽喜”圖由四個圖案構(gòu)成,這四個圖案中是中心對稱圖形的是()A. B. C. D.5.若拋物線y=(x-m)2+(m+1)的頂點在第一象限,則m的取值范圍為()A.m>1 B.m>0 C.m>-1 D.-1<m<06.如圖,正方形ABCD的對角線AC與BD相交于點O,∠ACB的角平分線分別交AB,BD于M,N兩點.若AM=2,則線段ON的長為()A. B. C.1 D.7.如圖,△ABC中,∠ACB=90°,沿CD折疊△CBD,使點B恰好落在AC邊上的點E處.若∠A=22°,則∠BDC等于A.44° B.60° C.67° D.77°8.如圖,在菱形ABCD中,AB=4,按以下步驟作圖:①分別以點C和點D為圓心,大于CD的長為半徑畫弧,兩弧交于點M,N;②作直線MN,且MN恰好經(jīng)過點A,與CD交于點E,連接BE,則BE的值為()A. B.2 C.3 D.49.已知二次函數(shù)(是常數(shù)),下列結(jié)論正確的是()A.當時,函數(shù)圖象經(jīng)過點B.當時,函數(shù)圖象與軸沒有交點C.當時,函數(shù)圖象的頂點始終在軸下方D.當時,則時,隨的增大而增大.10.在Rt△ABC中,∠C=90°,∠B=35°,AB=3,則BC的長為()A.3sin35° B. C.3cos35° D.3tan35°11.如圖,二次函數(shù)y=ax1+bx+c的圖象與x軸交于點A(﹣1,0),B(3,0).下列結(jié)論:①1a﹣b=0;②(a+c)1<b1;③當﹣1<x<3時,y<0;④當a=1時,將拋物線先向上平移1個單位,再向右平移1個單位,得到拋物線y=(x﹣1)1﹣1.其中正確的是()A.①③ B.②③ C.②④ D.③④12.方程x2=2x的解是()A.2 B.0 C.2或0 D.﹣2或0二、填空題(每題4分,共24分)13.如圖,為的直徑,弦于點,已知,,則的半徑為______.14.路燈(P點)距地面高9米,身高1.5的小藝站在距路燈的底部(O點)20米的A點,則此時小藝在路燈下的影子長是__________米.15.如圖,是正三角形,D、E分別是BC、AC上的點,當=_______時,~.16.二次函數(shù),當時,的最大值和最小值的和是_______.17.若關(guān)于的一元二次方程沒有實數(shù)根,則的取值范圍是__________.18.某養(yǎng)魚專業(yè)戶為了估計魚塘中魚的總條數(shù),他先從魚塘中撈出100條,將每條魚作了記號后放回水中,當它們完全混合于魚群后,再從魚塘中撈出100條魚,發(fā)現(xiàn)其中帶記號的魚有10條,估計該魚塘里約有________
條魚.三、解答題(共78分)19.(8分)如圖,直線y=2x+6與反比例函數(shù)y=(k>0)的圖像交于點A(1,m),與x軸交于點B,平行于x軸的直線y=n(0<n<6)交反比例函數(shù)的圖像于點M,交AB于點N,連接BM.(1)求m的值和反比例函數(shù)的表達式;(2)直線y=n沿y軸方向平移,當n為何值時,△BMN的面積最大?20.(8分)已知:如圖,Rt△ABC中,∠ACB=90°,sinB=,點D、E分別在邊AB、BC上,且AD∶DB=2∶3,DE⊥BC.(1)求∠DCE的正切值;(2)如果設(shè),,試用、表示.21.(8分)如圖,⊙O的半徑為1,等腰直角三角形ABC的頂點B的坐標為(,0),∠CAB=90°,AC=AB,頂點A在⊙O上運動.(1)當點A在x軸的正半軸上時,直接寫出點C的坐標;(2)當點A運動到x軸的負半軸上時,試判斷直線BC與⊙O位置關(guān)系,并說明理由;(3)設(shè)點A的橫坐標為x,△ABC的面積為S,求S與x之間的函數(shù)關(guān)系式.22.(10分)已知一次函數(shù)(為常數(shù),)的圖象分別與軸、軸交于、B兩點,且與反比例函數(shù)的圖象交于、D兩點(點在第二象限內(nèi),過點作軸于點(1)求的值(2)記為四邊形的面積,為的面積,若,求的值23.(10分)已知拋物線y=kx2+(1﹣2k)x+1﹣3k與x軸有兩個不同的交點A、B.(1)求k的取值范圍;(2)證明該拋物線一定經(jīng)過非坐標軸上的一點M,并求出點M的坐標;(3)當<k≤8時,由(2)求出的點M和點A,B構(gòu)成的△ABM的面積是否有最值?若有,求出該最值及相對應(yīng)的k值.24.(10分)如圖,正方形網(wǎng)格中,每個小正方形的邊長都是一個單位長度,在平面直角坐標系中,△OAB的三個頂點O(0,0)、A(4,1)、B(4,4)均在格點上.(1)畫出△OAB繞原點順時針旋轉(zhuǎn)后得到的△,并寫出點的坐標;(2)在(1)的條件下,求線段在旋轉(zhuǎn)過程中掃過的扇形的面積.25.(12分)已知一個二次函數(shù)的圖象經(jīng)過A(0,﹣3),B(1,0),C(m,2m+3),D(﹣1,﹣2)四點,求這個函數(shù)解析式以及點C的坐標.26.為加強我市創(chuàng)建文明衛(wèi)生城市宣傳力度,需要在甲樓A處到E處懸掛一幅宣傳條幅,在乙樓頂部D點測得條幅頂端A點的仰角∠ADF=45°,條幅底端E點的俯角為∠FDE=30°,DF⊥AB,若甲、乙兩樓的水平距離BC為21米,求條幅的長AE約是多少米?(,結(jié)果精確到0.1米)
參考答案一、選擇題(每題4分,共48分)1、D【解析】A.種植10棵幼樹,結(jié)果可能是“有9棵幼樹成活”,故不正確;B.種植100棵幼樹,結(jié)果可能是“90棵幼樹成活”和“10棵幼樹不成活”,故不正確;C.種植10n棵幼樹,可能有“9n棵幼樹成活”,故不正確;D.種植10n棵幼樹,當n越來越大時,種植成活幼樹的頻率會越來越穩(wěn)定于0.9,故正確;故選D.2、D【分析】由表可知,拋物線的對稱軸為,頂點為,再用待定系數(shù)法求得二次函數(shù)的解析式,再把代入即可求得y的值.【詳解】設(shè)二次函數(shù)的解析式為,當或時,,由拋物線的對稱性可知,,,把代入得,,二次函數(shù)的解析式為,當時,.故選D.【點睛】本題考查了待定系數(shù)法求二次函數(shù)的解析式,拋物線是軸對稱圖形,由表看出拋物線的對稱軸為,頂點為,是本題的關(guān)鍵.3、D【分析】先延長EF和BC,交于點G,再根據(jù)條件可以判斷三角形ABE為等腰直角三角形,并求得其斜邊BE的長,然后根據(jù)條件判斷三角形BEG為等腰三角形,最后根據(jù)△EFD∽△GFC得出CG與DE的倍數(shù)關(guān)系,并根據(jù)BG=BC+CG進行計算即可.【詳解】延長EF和BC,交于點G,∵3DF=4FC,∴,∵矩形ABCD中,∠ABC的角平分線BE與AD交于點E,∴∠ABE=∠AEB=45°,∴AB=AE=7,∴直角三角形ABE中,BE=,又∵∠BED的角平分線EF與DC交于點F,∴∠BEG=∠DEF,∵AD∥BC,∴∠G=∠DEF,∴∠BEG=∠G,∴BG=BE=,∵∠G=∠DEF,∠EFD=∠GFC,∴△EFD∽△GFC,∴,設(shè)CG=3x,DE=4x,則AD=7+4x=BC,∵BG=BC+CG,∴7+4x+3x=7,解得x=?1,∴BC=7+4x=7+4?4=3+4,故選:D.【點睛】本題主要考查了矩形、相似三角形以及等腰三角形,解決問題的關(guān)鍵是掌握矩形的性質(zhì):矩形的四個角都是直角,矩形的對邊相等.解題時注意:有兩個角對應(yīng)相等的兩個三角形相似.4、B【解析】根據(jù)中心對稱圖形的概念逐一判斷即可.【詳解】A.不是中心對稱圖形,故該選項不符合題意,B.是中心對稱圖形,符合題意,C.不是中心對稱圖形,故該選項不符合題意,D.不是中心對稱圖形,故該選項不符合題意,故選:B.【點睛】本題考查中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉(zhuǎn)180度后與原圖重合.5、B【分析】利用y=ax2+bx+c的頂點坐標公式表示出其頂點坐標,根據(jù)頂點在第一象限,所以頂點的橫坐標和縱坐標都大于0列出不等式組.【詳解】頂點坐標(m,m+1)在第一象限,則有解得:m>0,故選B.考點:二次函數(shù)的性質(zhì).6、C【分析】作MH⊥AC于H,如圖,根據(jù)正方形的性質(zhì)得∠MAH=45°,則△AMH為等腰直角三角形,所以AH=MH=AM=,再根據(jù)角平分線性質(zhì)得BM=MH=,則AB=2+,于是利用正方形的性質(zhì)得到AC=AB=2+2,OC=AC=+1,所以CH=AC-AH=2+,然后證明△CON∽△CHM,再利用相似比可計算出ON的長.【詳解】試題分析:作MH⊥AC于H,如圖,∵四邊形ABCD為正方形,∴∠MAH=45°,∴△AMH為等腰直角三角形,∴AH=MH=AM=×2=,∵CM平分∠ACB,∴BM=MH=,∴AB=2+,∴AC=AB=(2+)=2+2,∴OC=AC=+1,CH=AC﹣AH=2+2﹣=2+,∵BD⊥AC,∴ON∥MH,∴△CON∽△CHM,∴,即,∴ON=1.故選C.【點睛】本題考查了相似三角形的判定與性質(zhì):在判定兩個三角形相似時,應(yīng)注意利用圖形中已有的公共角、公共邊等隱含條件,以充分發(fā)揮基本圖形的作用,尋找相似三角形的一般方法是通過作平行線構(gòu)造相似三角形.也考查了角平分線的性質(zhì)和正方形的性質(zhì).7、C【解析】分析:△ABC中,∠ACB=90°,∠A=22°,∴∠B=90°-∠A=68°.由折疊的性質(zhì)可得:∠CED=∠B=68°,∠BDC=∠EDC,∴∠ADE=∠CED﹣∠A=46°.∴.故選C.8、B【解析】由作法得AE垂直平分CD,則∠AED=90°,CE=DE,于是可判斷∠DAE=30°,∠D=60°,作EH⊥BC于H,從而得到∠ECH=60°,利用三角函數(shù)可求出EH、CH的值,再利用勾股定理即可求出BE的長.【詳解】解:如圖所示,作EH⊥BC于H,由作法得AE垂直平分CD,∴∠AED=90°,CE=DE=2,∵四邊形ABCD為菱形,∴AD=2DE,∴∠DAE=30°,∴∠D=60°,∵AD//BC,∴∠ECH=∠D=60°,在Rt△ECH中,EH=CE·sin60°=,CH=CE·cos60°=,∴BH=4+1=5,在Rt△BEH中,由勾股定理得,.故選B.【點睛】本題考查了垂直平分線的性質(zhì)、菱形的性質(zhì)、解直角三角形等知識.合理構(gòu)造輔助線是解題的關(guān)鍵.9、D【分析】將和點代入函數(shù)解析式即可判斷A選項;利用可以判斷B選項;根據(jù)頂點公式可判斷C選項;根據(jù)拋物線的增減性質(zhì)可判斷D選項.【詳解】A.將和代入,故A選項錯誤;B.當時,二次函數(shù)為,,函數(shù)圖象與軸有一個交點,故B選項錯誤;C.函數(shù)圖象的頂點坐標為,即,當時,不一定小于0,則頂點不一定在軸下方,故C選項錯誤;D.當時,拋物線開口向上,由C選項得,函數(shù)圖象的對稱軸為,所以時,隨的增大而增大,故D選項正確;故選:D.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關(guān)系、二次函數(shù)圖象上點的坐標特征、根的判別式以及拋物線與x軸的交點,掌握拋物線的對稱軸、開口方向與系數(shù)之間的關(guān)系是解題的關(guān)鍵.10、C【分析】根據(jù)余弦定義求解即可.【詳解】解:如圖,∵∠C=90°,∠B=35°,AB=3,cos35°=,∴BC=3cos35°.故選:C.【點睛】本題考查了銳角三角函數(shù),屬于基礎(chǔ)題型,熟練掌握余弦的定義是解此題的關(guān)鍵.11、D【解析】分析:根據(jù)二次函數(shù)圖象與系數(shù)之間的關(guān)系即可求出答案.詳解:①圖象與x軸交于點A(﹣1,0),B(3,0),∴二次函數(shù)的圖象的對稱軸為x==1,∴=1,∴1a+b=0,故①錯誤;②令x=﹣1,∴y=a﹣b+c=0,∴a+c=b,∴(a+c)1=b1,故②錯誤;③由圖可知:當﹣1<x<3時,y<0,故③正確;④當a=1時,∴y=(x+1)(x﹣3)=(x﹣1)1﹣4將拋物線先向上平移1個單位,再向右平移1個單位,得到拋物線y=(x﹣1﹣1)1﹣4+1=(x﹣1)1﹣1,故④正確;故選:D.點睛:本題考查二次函數(shù)圖象的性質(zhì),解題的關(guān)鍵是熟知二次函數(shù)的圖象與系數(shù)之間的關(guān)系,本題屬于中等題型.12、C【分析】利用因式分解法求解可得.【詳解】解:∵x2=2x,∴x2﹣2x=0,則x(x﹣2)=0,∴x=0或x﹣2=0,解得:x1=0,x2=2,故選:C.【點睛】本題主要考查解一元二次方程的能力,熟練掌握解一元二次方程的幾種常用方法:直接開平方法、因式分解法、公式法、配方法,結(jié)合方程的特點選擇合適、簡便的方法是解題的關(guān)鍵.二、填空題(每題4分,共24分)13、1【分析】連接OD,根據(jù)垂徑定理求出DE,根據(jù)勾股定理求出OD即可.【詳解】解:連接OD,
∵CD⊥AB于點E,∴DE=CE=CD=×8=4,∠OED=90°,
由勾股定理得:OD=,即⊙O的半徑為1.
故答案為:1.【點睛】本題考查了垂徑定理和勾股定理的應(yīng)用,能根據(jù)垂徑定理求出DE的長是解此題的關(guān)鍵.14、2【分析】此題利用三角形相似證明即可,即圖中路燈與影長組成的三角形和小藝與自身影長組成的三角形相似,再根據(jù)對應(yīng)邊成比計算即可.【詳解】如圖:∵PO⊥OB,AC⊥AB,∴∠O=∠CAB,∴△POB△CAB,∴,由題意知:PO=9,CA=1.5,OA=20,∴,解得:AB=2,即小藝在路燈下的影子長是2米,故答案為:2.【點睛】此題考查根據(jù)相似三角形測影長的相關(guān)知識,利用相似三角形的相關(guān)性質(zhì)即可.15、60°【分析】由△ABC是正三角形可得∠B=60°,又由△ABD∽△DCE,根據(jù)相似三角形的對應(yīng)角相等,即可得∠EDC=∠BAD,然后利用三角形外角的性質(zhì),即可求得∠ADE的度數(shù)【詳解】∵△ABC是正三角形,∴∠B=60°,∵△ABD∽△DCE,∴∠EDC=∠BAD,∵∠ADC是△ABD的外角,∴∠ADE+∠EDC=∠B+∠BAD,∴∠ADE=∠B=60°,【點睛】此題考查了相似三角形的判定與性質(zhì)、等邊三角形的性質(zhì)以及三角形外角的性質(zhì).此題難度適中.16、【分析】首先求得拋物線的對稱軸,拋物線開口向上,在頂點處取得最小值,在距對稱軸最遠處取得最大值.【詳解】拋物線的對稱軸是x=1,則當x=1時,y=1?2?3=?1,是最小值;當x=3時,y=9?6?3=0是最大值.的最大值和最小值的和是-1故答案為:-1.【點睛】本題考查了二次函數(shù)的圖象和性質(zhì),正確理解取得最大值和最小值的條件是關(guān)鍵.17、【分析】根據(jù)根判別式可得出關(guān)于的一元一次不等式組,解不等式組即可得出結(jié)論.【詳解】由于關(guān)于一元二次方程沒有實數(shù)根,∵,,,∴,解得:.故答案為:.【點睛】本題考查了一元二次方程為常數(shù))的根的判別式.當0,方程有兩個不相等的實數(shù)根;當0,方程有兩個相等的實數(shù)根;當0,方程沒有實數(shù)根.18、1000【解析】試題考查知識點:統(tǒng)計初步知識抽樣調(diào)查思路分析:第二次撈出來的100條魚中有10條帶記號的,說明帶記號的魚約占整個池塘魚的總數(shù)的十分之一.具體解答過程:第二次撈出來的100條魚中有10條帶記號的,說明帶記號的魚約占整個池塘魚的總數(shù)的比例為:∵先從魚塘中撈出后作完記號又放回水中的魚有100條∴該魚塘里總條數(shù)約為:(條)試題點評:三、解答題(共78分)19、(1)m=8,反比例函數(shù)的表達式為y=;(2)當n=3時,△BMN的面積最大.【解析】(1)求出點A的坐標,利用待定系數(shù)法即可解決問題;(2)構(gòu)造二次函數(shù),利用二次函數(shù)的性質(zhì)即可解決問題.【詳解】解:(1)∵直線y=2x+6經(jīng)過點A(1,m),∴m=2×1+6=8,∴A(1,8),∵反比例函數(shù)經(jīng)過點A(1,8),∴8=,∴k=8,∴反比例函數(shù)的解析式為y=.(2)由題意,點M,N的坐標為M(,n),N(,n),∵0<n<6,∴<0,∴S△BMN=×(||+||)×n=×(﹣+)×n=﹣(n﹣3)2+,∴n=3時,△BMN的面積最大.20、(1);(2).【解析】試題分析:在中,根據(jù),設(shè)則根據(jù)得出:根據(jù)平行線分線段成比例定理,用表示出即可求得.先把用表示出來,根據(jù)向量加法的三角形法則即可求出.試題解析:(1),∴,∴設(shè)則即又,∴AC//DE.∴,,∴,.∴,.∴.(2)∵,,∴..∵,∴.21、(1)點A的坐標為(1,0)時,AB=AC=﹣1,點C的坐標為(1,﹣1)或(1,1﹣);(2)見解析;(3)S==﹣x,其中﹣1≤x≤1.【分析】(1)A點坐標為(1,0),根據(jù)AB=AC,分兩種情形求出C點坐標;
(2)根據(jù)題意過點O作OM⊥BC于點M,求出OM的長,與半徑比較得出位置關(guān)系;
(3)過點A作AE⊥OB于點E,在Rt△OAE中求AE的長,然后再在Rt△BAE中求出AB的長,進而求出面積的表達式;【詳解】(1)點A的坐標為(1,0)時,,點C的坐標為或;(2)如圖1中,結(jié)論:直線BC與⊙O相切.理由如下:過點O作OM⊥BC于點M,∴∠OBM=∠BOM=45°,∴OM=OB?sin45°=1∴直線BC與⊙O相切;(3)過點A作AE⊥OB于點E.在Rt△OAE中,AE2=OA2﹣OE2=1﹣x2,在Rt△BAE中,AB2=AE2+BE2,∴其中﹣1≤x≤1.【點睛】屬于圓的綜合題,考查直線和圓的位置關(guān)系,勾股定理,三角形的面積公式等,注意數(shù)形結(jié)合思想在解題中的應(yīng)用.22、(1);(2)【分析】(1)先求出A和B的坐標,進而求出,即可得出答案;(2)根據(jù)題意可得△AOB∽△AEC,得出,設(shè)出點C的坐標,列出方程,即可得出答案.【詳解】解:(1)一次函數(shù)(為常數(shù),)的圖象分別與軸、軸交于、兩點,令,則;令,則求得,∴,,∴,,在,,∵軸于點,∴軸,∴,∴;(2)根據(jù)題意得:,∴.設(shè)點的坐標為,則,,∴,解得:,或(舍去).【點睛】本題考查的是反比例函數(shù)的綜合,綜合性較強,注意面積比等于相似比的平方.23、(1)且;(2)見解析,M(3,4);(3)△ABM的面積有最大值,【分析】(1)根據(jù)題意得出△=(1-2k)2-4×k×(1-3k)=(1-4k)2>0,得出1-4k≠0,解不等式即可;
(2)y=k(x2-2x-3)+x+1,故只要x2-2x-3=0,那么y的值便與k無關(guān),解得x=3或x=-1(舍去,此時y=0,在坐標軸上),故定點為(3,4);
(3)由|AB|=|xA-xB|得出|AB|=||,由已知條件得出,得出0<||≤,因此|AB|最大時,||=,解方程即可得到結(jié)果.【詳解】解:(1)當時,函數(shù)為一次函數(shù),不符合題意,舍去;當時,拋物線與軸相交于不同的兩點、,△,,,∴k的取值范圍為且;(2)證明:拋物線,,拋物線過定點說明在這一點與k無關(guān),顯然當時,與k無關(guān),解得:或,當時,,定點坐標為;當時,,定點坐標為,∴M不
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年廣西生態(tài)工程職業(yè)技術(shù)學(xué)院高職單招數(shù)學(xué)歷年(2016-2024)頻考點試題含答案解析
- 2025年廣西中遠職業(yè)學(xué)院高職單招職業(yè)適應(yīng)性測試近5年??及鎱⒖碱}庫含答案解析
- 2025年廣州工程技術(shù)職業(yè)學(xué)院高職單招高職單招英語2016-2024歷年頻考點試題含答案解析
- 2025至2030年中國電動卷簾門數(shù)據(jù)監(jiān)測研究報告
- 2025年山東醫(yī)學(xué)高等專科學(xué)校高職單招職業(yè)技能測試近5年??及鎱⒖碱}庫含答案解析
- 2025至2030年中國干草水分測定儀數(shù)據(jù)監(jiān)測研究報告
- 2025年四川職業(yè)技術(shù)學(xué)院高職單招職業(yè)適應(yīng)性測試近5年??及鎱⒖碱}庫含答案解析
- 2025-2030全球育苗喂料器行業(yè)調(diào)研及趨勢分析報告
- 2025年度個人租賃土地合同修訂版7篇
- 2025至2031年中國電腦選臺收音機行業(yè)投資前景及策略咨詢研究報告
- 2024企業(yè)答謝晚宴會務(wù)合同3篇
- 《客艙安全管理與應(yīng)急處置》課件-第14講 應(yīng)急撤離
- 中華人民共和國文物保護法
- 節(jié)前物業(yè)安全培訓(xùn)
- 高甘油三酯血癥相關(guān)的器官損傷
- 手術(shù)室護士考試題及答案
- 牙膏項目創(chuàng)業(yè)計劃書
- 單位食堂供餐方案
- DB42-T 2204-2024 湖沼濕地溫室氣體通量監(jiān)測技術(shù)規(guī)范
- 急性會厭炎的護理
- 七年級下冊《Reading 1 A brave young man》優(yōu)質(zhì)課教案牛津譯林版-七年級英語教案
評論
0/150
提交評論