版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
臨夏市重點中學(xué)2023-2024學(xué)年數(shù)學(xué)九年級第一學(xué)期期末教學(xué)質(zhì)量檢測試題注意事項:1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.如圖,在矩形ABCD中,AB=4,AD=3,若以A為圓心,4為半徑作⊙A.下列四個點中,在⊙A外的是()A.點A B.點B C.點C D.點D2.下列四對圖形中,是相似圖形的是()A.任意兩個三角形 B.任意兩個等腰三角形C.任意兩個直角三角形 D.任意兩個等邊三角形3.生產(chǎn)季節(jié)性產(chǎn)品的企業(yè),當(dāng)它的產(chǎn)品無利潤時就會及時停產(chǎn).現(xiàn)有一生產(chǎn)季節(jié)性產(chǎn)品的企業(yè),其一年中獲得的利潤和月份之間的函數(shù)關(guān)系式為,則該企業(yè)一年中應(yīng)停產(chǎn)的月份是()A.1月、2月、3月 B.2月、3月、4月 C.1月、2月、12月 D.1月、11月、12月4.一個口袋中有紅球、白球共10個,這些球除顏色外都相同,將口袋中的球攪拌均勻,從中隨機模出一個球,記下它的顏色后再放回口袋中,不斷重復(fù)這一過程,共摸了100次球,發(fā)現(xiàn)有80次摸到紅球,則口袋中紅球的個數(shù)大約有()A.8個 B.7個 C.3個 D.2個5.在△ABC中,∠C=90°,AB=12,sinA=,則BC等于()A. B.4 C.36 D.6.在中,點在線段上,請?zhí)砑右粋€條件使,則下列條件中一定正確的是()A. B.C. D.7.如圖,點在線段上,在的同側(cè)作角的直角三角形和角的直角三角形,與,分別交于點,,連接.對于下列結(jié)論:①;②;③圖中有5對相似三角形;④.其中結(jié)論正確的個數(shù)是()A.1個 B.2個 C.4個 D.3個8.鉛球運動員擲鉛球的高度y(m)與水平距離x(m)之間的函數(shù)關(guān)系式為y=-x2+x+.則該運動員此次擲鉛球的成績是()A.6m B.12m C.8m D.10m9.如圖,為的直徑,弦于點,,,則的半徑為()A.5 B.8 C.3 D.1010.拋物線的頂點坐標(biāo)為()A.(3,1) B.(,1) C.(1,3) D.(1,)11.如圖,二次函數(shù)的圖象,則下列結(jié)論正確的是()①;②;③;④A.①②③ B.②③④ C.①③④ D.①②③④12.在Rt△ABC中,AB=6,BC=8,則這個三角形的內(nèi)切圓的半徑是()A.5 B.2 C.5或2 D.2或-1二、填空題(每題4分,共24分)13.在陽光下,高6m的旗桿在水平地面上的影子長為4m,此時測得附近一個建筑物的影子長為16m,則該建筑物的高度是_____m.14.二次函數(shù)的圖象如圖所示,給出下列說法:①;②方程的根為,;③;④當(dāng)時,隨值的增大而增大;⑤當(dāng)時,.其中,正確的說法有________(請寫出所有正確說法的序號).15.如圖,螺母的一個面的外沿可以看作是正六邊形,這個正六邊形ABCDEF的半徑是2cm,則這個正六邊形的周長是___.16.如圖,菱形ABCD的三個頂點在二次函數(shù)的圖象上,點A、B分別是該拋物線的頂點和拋物線與y軸的交點,則點D的坐標(biāo)為____________.17.如圖,點D、E分別是線段AB、AC上一點∠AED=∠B,若AB=8,BC=7,AE=5則,則DE=_____.18.一元二次方程的根是.三、解答題(共78分)19.(8分)問題發(fā)現(xiàn):(1)如圖1,內(nèi)接于半徑為4的,若,則_______;問題探究:(2)如圖2,四邊形內(nèi)接于半徑為6的,若,求四邊形的面積最大值;解決問題(3)如圖3,一塊空地由三條直路(線段、AB、)和一條弧形道路圍成,點是道路上的一個地鐵站口,已知千米,千米,,的半徑為1千米,市政府準(zhǔn)備將這塊空地規(guī)劃為一個公園,主入口在點處,另外三個入口分別在點、、處,其中點在上,并在公園中修四條慢跑道,即圖中的線段、、、,是否存在一種規(guī)劃方案,使得四條慢跑道總長度(即四邊形的周長)最大?若存在,求其最大值;若不存在,說明理由.20.(8分)21.(8分)如圖,直線AC與⊙O相切于點A,點B為⊙O上一點,且OC⊥OB于點O,連接AB交OC于點D.(1)求證:AC=CD;(2)若AC=3,OB=4,求OD的長度.22.(10分)如圖,在平面直角坐標(biāo)系中,過點M(0,2)的直線l與x軸平行,且直線l分別與反比例函數(shù)y=(x>0)和y=(x<0)的圖象分別交于點P,Q.(1)求P點的坐標(biāo);(2)若△POQ的面積為9,求k的值.23.(10分)如圖,在△ABC中,sinB=,cosC=,AB=5,求△ABC的面積.24.(10分)只有1和它本身兩個因數(shù)且大于1的正整數(shù)叫做素數(shù).我國數(shù)學(xué)家陳景潤在哥德巴赫猜想的研究中取得了世界領(lǐng)先的成果,哥德巴赫猜想是:每個大于2的偶數(shù)都可以表示為兩個素數(shù)的和,如16=3+1.(1)若從7,11,19,23中隨機抽取1個素數(shù),則抽到的素數(shù)是7的概率是_______;(2)若從7,11,19,23中隨機抽取1個素數(shù),再從余下的3個數(shù)字中隨機抽取1個素數(shù),用面樹狀圖或列表的方法求抽到的兩個素數(shù)之和大于等于30的概率,25.(12分)為促進新舊功能轉(zhuǎn)換,提高經(jīng)濟效益,某科技公司近期研發(fā)出一種新型高科技設(shè)備,每臺設(shè)備成本價為25萬元,經(jīng)過市場調(diào)研發(fā)現(xiàn),該設(shè)備的月銷售量(臺)和銷售單價(萬元)滿足如圖所示的一次函數(shù)關(guān)系.(1)求月銷售量與銷售單價的函數(shù)關(guān)系式;(2)根據(jù)相關(guān)規(guī)定,此設(shè)備的銷售單價不得高于35萬元,如果該公司想獲得130萬元的月利潤,那么該設(shè)備的銷售單價應(yīng)是多少萬元?26.如圖是四個全等的小矩形組成的圖形,這些矩形的頂點稱為格點.△ABC是格點三角形(頂點是格點的三角形)(1)若每個小矩形的較短邊長為1,則BC=;(2)①在圖1、圖2中分別畫一個格點三角形(頂點是格點的三角形),使它們都與△ABC相似(但不全等),且圖1,2中所畫三角形也不全等).②在圖3中只用直尺(沒有刻度)畫出△ABC的重心M.(保留痕跡,點M用黑點表示,并注上字母M)
參考答案一、選擇題(每題4分,共48分)1、C【解析】連接AC,利用勾股定理求出AC的長度,即可解題.【詳解】解:如下圖,連接AC,∵圓A的半徑是4,AB=4,AD=3,∴由勾股定理可知對角線AC=5,∴D在圓A內(nèi),B在圓上,C在圓外,故選C.【點睛】本題考查了圓的簡單性質(zhì),屬于簡單題,利用勾股定理求出AC的長是解題關(guān)鍵.2、D【分析】根據(jù)相似圖形的定義知,相似圖形的形狀相同,但大小不一定相同,對題中條件一一分析,排除錯誤答案.【詳解】解:A、任意兩個三角形,形狀不確定,不一定是相似圖形,故A錯誤;B、任意兩個等腰三角形,形狀不確定,不一定是相似圖形,故B錯誤;C、任意兩個直角三角形,直角邊的長度不確定,不一定是相似圖形,故C錯誤;D、任意兩個等邊三角形,形狀相同,但大小不一定相同,符合相似形的定義,故D正確;故選:D.【點睛】本題考查的是相似形的識別,關(guān)鍵要聯(lián)系實際,根據(jù)相似圖形的定義得出.3、C【分析】根據(jù)解析式,求出函數(shù)值y等于2時對應(yīng)的月份,依據(jù)開口方向以及增減性,再求出y小于2時的月份即可解答.【詳解】解:∵
∴當(dāng)y=2時,n=2或者n=1.
又∵拋物線的圖象開口向下,
∴1月時,y<2;2月和1月時,y=2.
∴該企業(yè)一年中應(yīng)停產(chǎn)的月份是1月、2月、1月.
故選:C.【點睛】本題考查二次函數(shù)的應(yīng)用.能將二次函數(shù)由一般式化為頂點式并理解二次函數(shù)的性質(zhì)是解決此題的關(guān)鍵.4、A【分析】根據(jù)利用頻率估計概率可估計摸到紅球的概率,即可求出紅球的個數(shù).【詳解】解:∵共摸了100次球,發(fā)現(xiàn)有80次摸到紅球,∴摸到紅球的概率估計為0.80,∴口袋中紅球的個數(shù)大約10×0.80=8(個),故選:A.【點睛】本題考查了利用頻率估計概率的知識,屬于常考題型,掌握計算的方法是關(guān)鍵.5、B【分析】根據(jù)正弦的定義列式計算即可.【詳解】解:在△ABC中,∠C=90°,sinA=,∴=,解得BC=4,故選B.【點睛】本題主要考查了三角函數(shù)正弦的定義,熟練掌握定義是解題的關(guān)鍵.6、B【分析】根據(jù)相似三角形的判定方法進行判斷,要注意相似三角形的對應(yīng)邊和對應(yīng)角.【詳解】解:如圖,在中,∠B的夾邊為AB和BC,在中,∠B的夾邊為AB和BD,∴若要,則,即故選B.【點睛】此題主要考查的是相似三角形的判定,正確地判斷出相似三角形的對應(yīng)邊和對應(yīng)角是解答此題的關(guān)鍵.7、D【分析】如圖,設(shè)AC與PB的交點為N,根據(jù)直角三角形的性質(zhì)得到,根據(jù)相似三角形的判定定理得到△BAE∽△CAD,故①正確;根據(jù)相似三角形的性質(zhì)得到∠BEA=∠CDA,推出△PME∽△AMD,根據(jù)相似三角形的性質(zhì)得到MP?MD=MA?ME,故②正確;由相似三角形的性質(zhì)得到∠APM=∠DEM=90,根據(jù)垂直的定義得到AP⊥CD,故④正確;同理:△APN∽△BCN,△PNC∽△ANB,于是得到圖中相似三角形有6對,故③不正確.【詳解】如圖,設(shè)AC與PB的交點為N,∵∠ABC=∠AED=90,∠BAC=∠DAE=30,∴,∠BAE=30+∠CAE,∠CAD=30+∠CAE,∴∠BAE=∠CAD,∴△BAE∽△CAD,故①正確;∵△BAE∽△CAD,∴∠BEA=∠CDA,∵∠PME=∠AMD,∴△PME∽△AMD,∴,∴MP?MD=MA?ME,故②正確;∴,∵∠PMA=∠EMD,∴△APM∽△DEM,∴∠APM=∠DEM=90,∴AP⊥CD,故④正確;同理:△APN∽△BCN,△PNC∽△ANB,∵△ABC∽△AED,∴圖中相似三角形有6對,故③不正確;故選:D.【點睛】本題考查了相似三角形的判定和性質(zhì),直角三角形的性質(zhì),正確的識別圖形是解題的關(guān)鍵.8、D【分析】依題意,該二次函數(shù)與x軸的交點的x值為所求.即在拋物線解析式中.令y=0,求x的正數(shù)值.【詳解】把y=0代入y=-x1+x+得:-x1+x+=0,解之得:x1=2,x1=-1.又x>0,解得x=2.故選D.9、A【分析】作輔助線,連接OA,根據(jù)垂徑定理得出AE=BE=4,設(shè)圓的半徑為r,再利用勾股定理求解即可.【詳解】解:如圖,連接OA,設(shè)圓的半徑為r,則OE=r-2,∵弦,∴AE=BE=4,由勾股定理得出:,解得:r=5,故答案為:A.【點睛】本題考查的知識點主要是垂徑定理、勾股定理及其應(yīng)用問題;解題的關(guān)鍵是作輔助線,靈活運用勾股定理等幾何知識點來分析、判斷或解答.10、A【分析】利用二次函數(shù)的頂點式是:y=a(x?h)2+k(a≠0,且a,h,k是常數(shù)),頂點坐標(biāo)是(h,k)進行解答.【詳解】∵,∴拋物線的頂點坐標(biāo)是(3,1).故選:A.【點睛】此題考查了二次函數(shù)的性質(zhì),二次函數(shù)y=a(x?h)2+k的頂點坐標(biāo)為(h,k),對稱軸為x=h.熟知二次函數(shù)的頂點坐標(biāo)式是解答本題的關(guān)鍵11、B【分析】由二次函數(shù)的開口方向,對稱軸0<x<1,以及二次函數(shù)與y的交點在x軸的上方,與x軸有兩個交點等條件來判斷各結(jié)論的正誤即可.【詳解】∵二次函數(shù)的開口向下,與y軸的交點在y軸的正半軸,∴a<0,c>0,故④正確;∵0<?<1,∴b>0,故①錯誤;當(dāng)x=?1時,y=a?b+c<0,∴a+c<b,故③正確;∵二次函數(shù)與x軸有兩個交點,∴△=b2?4ac>0,故②正確正確的有3個,故選:C.【點睛】此題主要考查了二次函數(shù)的圖象與系數(shù)的關(guān)系,要熟練掌握,解答此題的關(guān)鍵是要明確:①二次項系數(shù)a決定拋物線的開口方向和大?。寒?dāng)a>0時,拋物線向上開口;當(dāng)a<0時,拋物線向下開口;②一次項系數(shù)b和二次項系數(shù)a共同決定對稱軸的位置:當(dāng)a與b同號時(即ab>0),對稱軸在y軸左;當(dāng)a與b異號時(即ab<0),對稱軸在y軸右.(簡稱:左同右異)③常數(shù)項c決定拋物線與y軸交點.拋物線與y軸交于(0,c).12、D【解析】分AC為斜邊和BC為斜邊兩種情況討論.根據(jù)切線定理得過切點的半徑垂直于三角形各邊,利用面積法列式求半徑長.【詳解】第一情況:當(dāng)AC為斜邊時,如圖,設(shè)⊙O是Rt△ABC的內(nèi)切圓,切點分別為D,E,F,連接OC,OA,OB,∴OD⊥AC,OE⊥BC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,,∵,∴,∴,∴r=2.第二情況:當(dāng)BC為斜邊時,如圖,設(shè)⊙O是Rt△ABC的內(nèi)切圓,切點分別為D,E,F,連接OC,OA,OB,∴OD⊥BC,OE⊥AC,OF⊥AB,且OD=OE=OF=r,在Rt△ABC中,AB=6,BC=8,由勾股定理得,,∵,∴,∴,∴r=.故選:D.【點睛】本題考查了三角形內(nèi)切圓半徑的求法及勾股定理,依據(jù)圓的切線性質(zhì)是解答此題的關(guān)鍵.等面積法是求高度等線段長的常用手段.二、填空題(每題4分,共24分)13、1【分析】先設(shè)建筑物的高為h米,再根據(jù)同一時刻物高與影長成正比列出關(guān)系式求出h的值即可.【詳解】解:設(shè)建筑物的高為h米,則=,解得h=1.故答案為:1.【點睛】本題考查的是相似三角形的應(yīng)用,熟知同一時刻物高與影長成正比是解答此題的關(guān)鍵.14、①②④【分析】根據(jù)拋物線的對稱軸判斷①,根據(jù)拋物線與x軸的交點坐標(biāo)判斷②,根據(jù)函數(shù)圖象判斷③④⑤.【詳解】解:∵對稱軸是x=-=1,∴ab<0,①正確;∵二次函數(shù)y=ax2+bx+c的圖象與x軸的交點坐標(biāo)為(-1,0)、(3,0),∴方程x2+bx+c=0的根為x1=-1,x2=3,②正確;∵當(dāng)x=1時,y<0,∴a+b+c<0,③錯誤;由圖象可知,當(dāng)x>1時,y隨x值的增大而增大,④正確;當(dāng)y>0時,x<-1或x>3,⑤錯誤,故答案為①②④.【點睛】本題考查的是二次函數(shù)圖象與系數(shù)之間的關(guān)系,二次函數(shù)y=ax2+bx+c系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點、拋物線與x軸交點的個數(shù)確定.15、12【分析】確定正六邊形的中心O,連接EO、FO,易證正六變形的邊長等于其半徑,可得正六邊形的周長.【詳解】解:如圖,確定正六邊形的中心O,連接EO、FO.由正六邊形可得是等邊三角形所以正六邊形的周長為故答案為:【點睛】本題考查了正多邊形與圓,靈活利用正多邊形的性質(zhì)是解題的關(guān)鍵.16、(2,).【詳解】解:由題意可知:拋物線y=ax2-2ax+(a<0)的對稱軸是直線x=1,與y軸的交點坐標(biāo)是(2,),即點B的坐標(biāo)是(2,)由菱形ABCD的三個頂點在二次函數(shù)y=ax2-2ax+(a<0)的圖象上,點A,B分別是拋物線的頂點和拋物線與y軸的交點,∴點B與點D關(guān)于直線x=1對稱,得到點D的坐標(biāo)為(2,).故答案為(2,).17、【分析】先根據(jù)題意得出△AED∽△ABC,再由相似三角形的性質(zhì)即可得出結(jié)論.【詳解】∵∠A=∠A,∠AED=∠B,∴△AED∽△ABC,∴,∵AB=8,BC=7,AE=5,∴,解得ED=.故答案為:.【點睛】本題考查的是相似三角形的判定與性質(zhì),熟知相似三角形的對應(yīng)邊成比例是解答此題的關(guān)鍵.18、【解析】四種解一元二次方程的解法即:直接開平方法,配方法,公式法,因式分解法.注意識別使用簡單的方法進行求解,此題應(yīng)用因式分解法較為簡捷,因此,.三、解答題(共78分)19、(1);(2)四邊形ABCD的面積最大值是;(3)存在,其最大值為.【分析】(1)連接OA、OB,作OH⊥AB于H,利用求出∠AOH=∠AOB=,根據(jù)OA=4,利用余弦公式求出AH,即可得到AB的長;(2)連接AC,由得出AC=,再根據(jù)四邊形的面積=,當(dāng)DH+BM最大時,四邊形ABCD的面積最大,得到BD是直徑,再將AC、BD的值代入求出四邊形面積的最大值即可;(3)先證明△ADM≌△BMC,得到△CDM是等邊三角形,求得等邊三角形的邊長CD,再根據(jù)完全平方公式的關(guān)系得出PD=PC時PD+PC最大,根據(jù)CD、∠DPC求出PD,即可得到四邊形周長的最大值.【詳解】(1)連接OA、OB,作OH⊥AB于H,∵,∴∠AOB=120.∵OH⊥AB,∴∠AOH=∠AOB=,AH=BH=AB,∵OA=4,∴AH=,∴AB=2AH=.故答案為:.(2)∵∠ABC=120,四邊形ABCD內(nèi)接于,∴∠ADC=60,∵的半徑為6,∴由(1)得AC=,如圖,連接AC,作DH⊥AC,BM⊥AC,∴四邊形的面積=,當(dāng)DH+BM最大時,四邊形ABCD的面積最大,連接BD,則BD是的直徑,∴BD=2OA=12,BD⊥AC,∴四邊形的面積=.∴四邊形ABCD的面積最大值是(3)存在;∵千米,千米,,∴△ADM≌△BMC,∴DM=MC,∠AMD=∠BCM,∵∠BCM+∠BMC=180-∠B=120,∴∠AMD+∠BMC=120,∴∠DMC=60,∴△CDM是等邊三角形,∴C、D、M三點共圓,∵點P在弧CD上,∴C、D、M、P四點共圓,∴∠DPC=180-∠DMC=120,∵弧的半徑為1千米,∠DMC=60,∴CD=,∵,∴,∴,∴當(dāng)PD=PC時,PD+PC最大,此時點P在弧CD的中點,交DC于H,在Rt△DPH中,∠DHP=90,∠DPH=60,DH=DC=,∴,∴四邊形的周長最大值=DM+CM+DP+CP=.【點睛】此題是一道綜合題,考查圓的性質(zhì),垂徑定理,三角函數(shù),三角形全等的判定及性質(zhì),動點最大值等知識點.(1)中問題發(fā)現(xiàn)的結(jié)論應(yīng)用很主要,理解題意在(2)、(3)中應(yīng)用解題,(3)的PD+PC最大值的確定是難點,注意與所學(xué)知識的結(jié)合才能更好的解題.20、【分析】移項,利用配方法解方程即可.【詳解】移項得:,配方得:,∴,∴.【點睛】本題主要考查了解一元二次方程-配方法,正確應(yīng)用完全平方公式是解題關(guān)鍵.21、(1)見解析;(1)1【分析】(1)由AC是⊙O的切線,得OA⊥AC,結(jié)合OD⊥OB,OA=OB,得∠CDA=∠DAC,進而得到結(jié)論;(1)利用勾股定理求出OC,即可解決問題.【詳解】(1)∵AC是⊙O的切線,∴OA⊥AC,∴∠OAC=90°,即:∠OAD+∠DAC=90°,∵OD⊥OB,∴∠DOB=90°,∴∠BDO+∠B=90°,∵OA=OB,∴∠OAD=∠B,∴∠BDO=∠DAC,∵∠BDO=∠CDA,∴∠CDA=∠DAC,∴CD=CA.(1)∵在Rt△ACO中,OC==5,∵CA=CD=3,∴OD=OC﹣CD=1.【點睛】本題主要考查圓的基本性質(zhì),掌握切線的基本性質(zhì),是解題的關(guān)鍵.22、(1)(3,2);(2)k=﹣1【分析】(1)由于PQ∥x軸,則點P的縱坐標(biāo)為2,然后把y=2代入y=得到對應(yīng)的自變量的值,從而得到P點坐標(biāo);(2)由于S△POQ=S△OMQ+S△OMP,根據(jù)反比例函數(shù)k的幾何意義得到|k|+×|6|=9,然后解方程得到滿足條件的k的值.【詳解】(1)∵PQ∥x軸,∴點P的縱坐標(biāo)為2,把y=2代入y=得x=3,∴P點坐標(biāo)為(3,2);(2)∵S△POQ=S△OMQ+S△OMP,∴|k|+×|6|=9,∴|k|=1,而k<0,∴k=﹣1.【點睛】本題主要考查了反比例函數(shù)的圖象與性質(zhì),掌握反比例函數(shù)k的幾何意義是解題的關(guān)鍵.23、【分析】過A作AD⊥BC,根據(jù)三角函數(shù)和三角形面積公式解答即可.【詳解】過A作AD⊥BC.在△ABD中,∵sinB=,AB=5,∴AD=3,BD=1.在△ADC中,∵cosC=,∴∠C=15°,∴DC=AD=3,∴△ABC的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025皮革及人造皮革聯(lián)營合同
- 家庭娛樂電腦租賃合同
- 城市綠化套筒連接安裝協(xié)議
- 高爾夫球場花園施工合同模板
- 精神病院醫(yī)護人員聘用協(xié)議
- 裝修貸款協(xié)議書
- 食品原料儲存罐租賃合同
- 銀川市環(huán)保企業(yè)租賃合同
- 旅游賽事組織服務(wù)合同
- 職業(yè)院校項目評估與可持續(xù)發(fā)展
- 部編版語文八年級下冊第三單元知識點梳理
- 2023屆中職語文專題復(fù)習(xí)《現(xiàn)代文閱讀答題技巧》課件
- 安全物資培訓(xùn)
- pep人教版英語六年級上冊:英語作文匯集
- 茶葉機械化采摘技術(shù)規(guī)程
- 云南省昆明市盤龍區(qū)2022-2023學(xué)年九年級上學(xué)期期末英語試題
- 《無機功能材料》課件
- 混凝土售后服務(wù)承諾書
- 規(guī)范權(quán)力運行方面存在問題及整改措施范文(五篇)
- 新改版教科版四年級上冊科學(xué)全冊問答題梳理
- 芳療實證全書
評論
0/150
提交評論