下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
【課時(shí)訓(xùn)練】直接證明與間接證明一、選擇題1.(2018廣東廣州模擬)已知函數(shù)f(x)=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))x,a,b是正實(shí)數(shù),A=feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a+b,2))),B=f(eq\r(ab)),C=feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(ab,a+b))),則A、B、C的大小關(guān)系為()A.A≤B≤C B.A≤C≤BC.B≤C≤A D.C≤B≤A【答案】A【解析】∵eq\f(a+b,2)≥eq\r(ab)≥eq\f(2ab,a+b),又f(x)=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,2)))x在R內(nèi)為減函數(shù).∴feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(a+b,2)))≤f(eq\r(ab))≤feq\b\lc\(\rc\)(\a\vs4\al\co1(\f(2ab,a+b))),即A≤B≤C,選A.2.(2018寧波模擬)分析法又稱執(zhí)果索因法,若用分析法證明:“設(shè)a>b>c,且a+b+c=0,求證eq\r(b2-ac)<eq\r(3)a”索的因應(yīng)是()A.a(chǎn)-b>0 B.a(chǎn)-c>0C.(a-b)(a-c)>0 D.(a-b)(a-c)<0【答案】C【解析】eq\r(b2-ac)<eq\r(3)a?b2-ac<3a2?(a+c)2-ac<3a2?a2+2ac+c2-ac-3a2<0?-2a2+ac+c2<0?2a2-ac-c2>0?(a-c)(2a+c)>0?(a-c)(a-b)>0.3.(2018浙江嘉興高三模擬)設(shè)f(x)是定義在R內(nèi)的奇函數(shù),且當(dāng)x≥0時(shí),f(x)單調(diào)遞減,若x1+x2>0,則f(x1)+f(x2)的值()A.恒為負(fù)值 B.恒等于零C.恒為正值 D.無法確定正負(fù)【答案】A【解析】由f(x)是定義在R內(nèi)的奇函數(shù),且當(dāng)x≥0時(shí),f(x)單調(diào)遞減,可知f(x)是R內(nèi)的單調(diào)遞減函數(shù),由x1+x2>0可知x1>-x2,f(x1)<f(-x2)=-f(x2),則f(x1)+f(x2)<0,故選A.4.(2018福建福州一中1月月考)一不相等的三個(gè)正數(shù)a,b,c成等差數(shù)列,并且x是a,b的等比中項(xiàng),y是b,c的等比中項(xiàng),則x2,b2,y2三數(shù)()A.成等比數(shù)列而非等差數(shù)列B.成等差數(shù)列而非等比數(shù)列C.既成等差數(shù)列又成等比數(shù)列D.既非等差數(shù)列又非等比數(shù)列【答案】B【解析】由已知條件可得eq\b\lc\{\rc\(\a\vs4\al\co1(a+c=2b,①,x2=ab,②,y2=bc,③))由②③,得eq\b\lc\{\rc\(\a\vs4\al\co1(a=\f(x2,b),,c=\f(y2,b).))代入①,得eq\f(x2,b)+eq\f(y2,b)=2b,即x2+y2=2b2.故x2,b2,y2成等差數(shù)列.5.(2018大連模擬)設(shè)S是至少含有兩個(gè)元素的集合,在S上定義了一個(gè)二元運(yùn)算“*”(即對(duì)任意的a,b∈S,對(duì)于有序元素對(duì)(a,b),在S中有唯一確定的元素a*b與之對(duì)應(yīng)),若對(duì)任意的a,b∈S,有a*(b*a)=b,則對(duì)任意的a,b∈S,下列等式中不恒成立的是()A.(a*b)*a=aB.[a*(b*a)]*(a*b)=aC.b*(b*b)=bD.(a*b)*[b*(a*b)]=b【答案】A【解析】由已知條件可得對(duì)任意a,b∈S,a*(b*a)=b,則b*(b*b)=b,[a*(b*a)]*(a*b)=b*(a*b)=a,(a*b)*[b*(a*b)]=(a*b)*a=b,即選項(xiàng)B,C,D中的等式均恒成立,僅選項(xiàng)A中的等式不恒成立.故選A.二、填空題6.(2018太原模擬)用反證法證明“若x2-1=0,則x=-1或x=1”時(shí),應(yīng)假設(shè)________.【答案】x≠-1且x≠1【解析】“x=-1或x=1”的否定是“x≠-1且x≠1”.7.(2018華師附中一模)如果aeq\r(a)+beq\r(b)>aeq\r(b)+beq\r(a),則a,b應(yīng)滿足的條件是________.【答案】a≥0,b≥0且a≠b【解析】aeq\r(a)+beq\r(b)>aeq\r(b)+beq\r(a)?(eq\r(a)-eq\r(b))2·(eq\r(a)+eq\r(b))>0?a≥0,b≥0且a≠b.8.(2018浙江杭州模擬)若P=eq\r(a)+eq\r(a+7),Q=eq\r(a+3)+eq\r(a+4)(a≥0),則P,Q的大小關(guān)系是________.【答案】P<Q【解析】∵P2=2a+7+2eq\r(a)eq\r(a+7)=2a+7+2eq\r(a2+7a),Q2=2a+7+2eq\r(a+3)eq\r(a+4)=2a+7+2eq\r(a2+7a+12),∴P2<Q2.又∵P>0,Q>0,∴P<Q.三、解答題9.(2018成都模擬)如圖,在四棱錐P-ABCD中,PC⊥底面ABCD,ABCD是直角梯形,AB⊥AD,AB∥CD,AB=2AD=2CD=2,E是PB的中點(diǎn).(1)求證:EC∥平面PAD;(2)求證:平面EAC⊥平面PBC.【證明】(1)作線段AB的中點(diǎn)F,連接EF,CF(圖略),則AF=CD,AF∥CD,∴四邊形ADCF是平行四邊形,則CF∥AD.又EF∥AP,且CF∩EF=F,AD∩AP=A,∴平面CFE∥平面PAD.又EC?平面CEF,∴EC∥平面PAD.(2)∵PC⊥底面ABCD,∴PC⊥AC.∵四邊形ABCD是直角梯形,且AB=2AD=2CD=2,∴AC=eq\r(2),BC=eq\r(2).∴AB2=AC2+BC2.∴AC⊥BC.∵PC∩BC=C,∴AC⊥平面PBC.∵AC?平面EAC,∴平面EAC⊥平面PBC.10.(2018昆明三中、玉溪一中統(tǒng)考)若f(x)的定義域?yàn)閇a,b],值域?yàn)閇a,b](a<b),則稱函數(shù)f(x)是[a,b]上的“四維光軍”函數(shù).(1)設(shè)g(x)=eq\f(1,2)x2-x+eq\f(3,2)是[1,b]上的“四維光軍”函數(shù),求常數(shù)b的值;(2)是否存在常數(shù)a,b(a>-2),使函數(shù)h(x)=eq\f(1,x+2)是區(qū)間[a,b]上的“四維光軍”函數(shù)?若存在,求出a,b的值;若不存在,請(qǐng)說明理由.【解】(1)由題設(shè),得g(x)=eq\f(1,2)(x-1)2+1,其圖象的對(duì)稱軸為x=1,區(qū)間[1,b]在對(duì)稱軸的右邊,所以函數(shù)在區(qū)間[1,b]上單調(diào)遞增.由“四維光軍”函數(shù)的定義可知g(1)=1,g(b)=b,即eq\f(1,2)b2-b+eq\f(3,2)=b,解得b=1或b=3.因?yàn)閎>1,所以b=3.(2)假設(shè)函數(shù)h(x)=eq\f(1,x+2)在區(qū)間[a,b](a>-2)上是“四維光軍”函數(shù),因?yàn)閔(x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 小學(xué)五年級(jí)小數(shù)乘除法計(jì)算題匯編
- 科創(chuàng)板開通知識(shí)測(cè)試參考答案
- 語文試卷 天津市濱海新區(qū)五所重點(diǎn)中學(xué)高三畢業(yè)班聯(lián)考語文試卷
- 保險(xiǎn)行業(yè)助理的工作總結(jié)和技能要求
- 骨骼疾病護(hù)理工作總結(jié)
- 家具家居行業(yè)技術(shù)嘗試改造
- 生物醫(yī)藥行業(yè)技術(shù)工作總結(jié)
- 紙制品行業(yè)業(yè)務(wù)員工作總結(jié)
- 游戲界面設(shè)計(jì)師的交互體驗(yàn)和游戲設(shè)計(jì)
- 《機(jī)械防煙方式》課件
- 七年級(jí)下冊(cè)道德與法治復(fù)習(xí)資料
- 阿里云數(shù)字化轉(zhuǎn)型生態(tài)介紹課件
- 初中語文人教八年級(jí)上冊(cè)《誠信綜合實(shí)踐》PPT
- 奧齒泰-工具盒使用精講講解學(xué)習(xí)課件
- 最新MARSI-醫(yī)用黏膠相關(guān)皮膚損傷課件
- 工程開工報(bào)審表范本
- 航空小鎮(zhèn)主題樂園項(xiàng)目規(guī)劃設(shè)計(jì)方案
- 保潔冬季防滑防凍工作措施
- 少兒美術(shù)課件-《我的情緒小怪獸》
- 永續(xù)債計(jì)入權(quán)益的必備條件分析
- 預(yù)應(yīng)力鋼絞線張拉伸長量計(jì)算程序單端(自動(dòng)版)
評(píng)論
0/150
提交評(píng)論