![期海南省五指山中學2024屆八上數(shù)學期末綜合測試模擬試題含解析_第1頁](http://file4.renrendoc.com/view10/M02/11/13/wKhkGWXqSL6Ae0SdAAHu0LaJulI084.jpg)
![期海南省五指山中學2024屆八上數(shù)學期末綜合測試模擬試題含解析_第2頁](http://file4.renrendoc.com/view10/M02/11/13/wKhkGWXqSL6Ae0SdAAHu0LaJulI0842.jpg)
![期海南省五指山中學2024屆八上數(shù)學期末綜合測試模擬試題含解析_第3頁](http://file4.renrendoc.com/view10/M02/11/13/wKhkGWXqSL6Ae0SdAAHu0LaJulI0843.jpg)
![期海南省五指山中學2024屆八上數(shù)學期末綜合測試模擬試題含解析_第4頁](http://file4.renrendoc.com/view10/M02/11/13/wKhkGWXqSL6Ae0SdAAHu0LaJulI0844.jpg)
![期海南省五指山中學2024屆八上數(shù)學期末綜合測試模擬試題含解析_第5頁](http://file4.renrendoc.com/view10/M02/11/13/wKhkGWXqSL6Ae0SdAAHu0LaJulI0845.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
期海南省五指山中學2024屆八上數(shù)學期末綜合測試模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.下列各組數(shù)中,是勾股數(shù)的是()A. B. C. D.2.下列長度的三條線段能組成三角形的是()A.3,4,8 B.2,5,3 C.,,5 D.5,5,103.點P(﹣3,﹣4)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.如圖所示,在△MNP中,∠P=60°,MN=NP,MQ⊥PN,垂足為Q,延長MN至點G,取NG=NQ,若△MNP的周長為12,MQ=a,則△MGQ周長是()A.8+2a B.8a C.6+a D.6+2a5.如圖,一次函數(shù),的圖象與的圖象相交于點,則方程組的解是()A. B. C. D.6.如圖是兩個全等三角形,圖中字母表示三角形的邊長,則的度數(shù)為()A. B. C. D.7.有下列長度的三條線段,能組成三角形的是()A.2cm,3cm,4cm B.1cm,4cm,2cmC.1cm,2cm,3cm D.6cm,2cm,3cm8.小東一家自駕車去某地旅行,手機導航系統(tǒng)推薦了兩條線路,線路一全程120千米,線路二全程150千米,汽車在線路二上行駛的平均時速是線路一上車速的2倍,線路二的用時預計比線路一用時少小時,如果設汽車在線路一上行駛的平均速度為千米/時,則下面所列方程正確的是()A. B.C. D.9.下列國旗中,不是軸對稱圖形的是()A. B.C. D.10.如圖點在內,且到三邊的距離相等.若,則等于()A. B. C. D.二、填空題(每小題3分,共24分)11.如圖,在四邊形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC,CD上分別找一點M,N,使三角形AMN周長最小時,則∠MAN的度數(shù)為_________.12.如圖,長方形的邊在數(shù)軸上,,點在數(shù)軸上對應的數(shù)是-1,以點為圓心,對角線長為半徑畫弧,交數(shù)軸于點,則點表示的數(shù)是__________.13.如圖,已知∠1=∠2,請你添加一個條件______,使得△ABD≌△ACD.(添一個即可)14.函數(shù)中,自變量的取值范圍是.15.數(shù)學家發(fā)明了一個魔術盒,當任意數(shù)對(a,b)進入其中時,會得到一個新的數(shù):(a﹣2)(b﹣1).現(xiàn)將數(shù)對(m,2)放入其中,得到數(shù)n,再將數(shù)對(n,m)放入其中后,最后得到的數(shù)是_____.(結果要化簡)16.如圖是一個供滑板愛好者使用的U型池,該U型池可以看作是一個長方體去掉一個半圓柱而成,中間可供滑行部分的斜面是半徑為4m的半圓,其邊緣AB=CD=20m,點E在CD上,CE=4m,一滑行愛好者從A點滑行到E點,則他滑行的最短距離為____________m(的值為3)17.如果點和點關于軸對稱,則______.18.若A(2,b),B(a,-3)兩點關于y軸對稱,則a-b=_______.三、解答題(共66分)19.(10分)為參加八年級英語單詞比賽,某校每班派相同人數(shù)的學生參加,成績分別為A、B、C、D四個等級.其中相應等級的得分依次記為10分、9分、8分、7分.學校將八年級的一班和二班的成績整理并繪制成如下統(tǒng)計圖表:班級平均數(shù)(分)中位數(shù)(分)眾數(shù)(分)一班8.76a=b=二班8.76c=d=根據以上提供的信息解答下列問題:(1)請補全一班競賽成績統(tǒng)計圖;(2)請直接寫出a、b、c、d的值;(3)你認為哪個班成績較好,請寫出支持你觀點的理由.20.(6分)解分式方程:.21.(6分)已知:△ABC中,∠ACB=90°,AC=BC.(1)如圖1,點D在BC的延長線上,連AD,過B作BE⊥AD于E,交AC于點F.求證:AD=BF;(2)如圖2,點D在線段BC上,連AD,過A作AE⊥AD,且AE=AD,連BE交AC于F,連DE,問BD與CF有何數(shù)量關系,并加以證明;(3)如圖3,點D在CB延長線上,AE=AD且AE⊥AD,連接BE、AC的延長線交BE于點M,若AC=3MC,請直接寫出的值.22.(8分)計算與化簡求值:(1)(2)(3)化簡,并選一個合適的數(shù)作為的值代入求值.23.(8分)已知,如圖,中,,,,以斜邊為底邊作等腰三角形,腰剛好滿足,并作腰上的高.(1)求證:;(2)求等腰三角形的腰長.24.(8分)如圖,AC平分∠BCD,AB=AD,AE⊥BC于E,AF⊥CD于F.(1)若∠ABE=60°,求∠CDA的度數(shù);(2)若AE=2,BE=1,CD=4.求四邊形AECD的面積.25.(10分)如圖,,,的垂直平分線交于,(1)求的度數(shù);(2)若,,求的周長.26.(10分)如圖,在中,,,是中點,.求證:(1);(2)是等腰直角三角形.
參考答案一、選擇題(每小題3分,共30分)1、D【分析】滿足a2+b2=c2的三個正整數(shù),稱為勾股數(shù),由此求解即可.【詳解】A、∵72+82≠92,∴此選項不符合題意;B、∵62+82≠112,∴此選項不符合題意;C、∵52+122≠142,此選項不符合題意;D、∵42+32=52,∴此選項符合題意.故選:D.【點睛】此題考查了勾股數(shù),說明:①三個數(shù)必須是正整數(shù),例如:2.5、6、6.5滿足a2+b2=c2,但是它們不是正整數(shù),所以它們不是夠勾股數(shù).②一組勾股數(shù)擴大相同的整數(shù)倍得到三個數(shù)仍是一組勾股數(shù).③記住常用的勾股數(shù)再做題可以提高速度.如:3,4,5;6,8,10;5,12,13;…2、C【解析】選項A,3+4<8,根據三角形的三邊關系可知,不能夠組成三角形;選項B,2+3=5,根據三角形的三邊關系可知,不能夠組成三角形;選項C,+>5,根據三角形的三邊關系可知,能夠組成三角形;選項D,5+5=10,根據三角形的三邊關系可知,不能夠組成三角形;故選C.3、C【解析】根據第三象限內點的橫坐標小于零,縱坐標小于零,可得:點P(﹣3,﹣4)位于第三象限.故選C.4、D【分析】在△MNP中,∠P=60°,MN=NP,證明△MNP是等邊三角形,再利用MQ⊥PN,求得PM、NQ長,再根據等腰三角形的性質求解即可.【詳解】解:∵△MNP中,∠P=60°,MN=NP
∴△MNP是等邊三角形.
又∵MQ⊥PN,垂足為Q,
∴PM=PN=MN=4,NQ=NG=2,MQ=a,∠QMN=30°,∠PNM=60°,
∵NG=NQ,
∴∠G=∠QMN,
∴QG=MQ=a,
∵△MNP的周長為12,
∴MN=4,NG=2,
∴△MGQ周長是6+2a.
故選:D.【點睛】本題考查了等邊三角形的判定與性質,難度一般,認識到△MNP是等邊三角形是解決本題的關鍵.5、A【分析】根據圖象求出交點P的坐標,根據點P的坐標即可得出答案.【詳解】解:∵由圖象可知:一次函數(shù)y=k1x+b1的圖象l1與y=k2x+b2的圖象l2的交點P的坐標是(-2,3),∴方程組的解是,故選A.【點睛】本題考查了對一次函數(shù)與二元一次方程組的關系的理解和運用,主要考查學生的觀察圖形的能力和理解能力,題目比較典型,但是一道比較容易出錯的題目.6、C【分析】根據三角形全等的性質可知,兩個三角形全等,對應角相等,由三角形內角和減去已知角度即可得所求角度數(shù).【詳解】圖為兩個全等的三角形,所以對應角相等,,故選:C.【點睛】考查全等三角形的性質和三角形內角和,熟記全等的性質是做題關鍵,注意對應邊所對的角為對應角,邊角關系要找到對應的.7、A【分析】根據三角形的特性:兩邊之和大于第三邊,三角形的兩邊的之差一定小于第三邊;進行解答即可.【詳解】A、2+3>4,能圍成三角形;
B、1+2<4,所以不能圍成三角形;
C、1+2=3,不能圍成三角形;
D、2+3<6,所以不能圍成三角形;
故選:A.【點睛】本題主要考查了三角形的三邊關系的應用,在運用三角形三邊關系判定三條線段能否構成三角形時并不一定要列出三個不等式,只要兩條較短的線段長度之和大于第三條線段的長度即可判定這三條線段能構成一個三角形.8、A【分析】根據題意可得在線路二上行駛的平均速度為2xkm/h,根據線路二的用時預計比線路一用時少小時,列方程即可.【詳解】解:設汽車在線路一上行駛的平均速度為xkm/h,則在線路二上行駛的平均速度為2xkm/h,由題意得:故選:A.【點睛】本題考查了由實際問題抽象出分式方程,解答本題的關鍵是,讀懂題意,設出未知數(shù),找出合適的等量關系,列出方程.9、A【分析】一個圖形沿一條直線對折后,直線兩旁的部分能夠完全重合,這樣的圖形叫做軸對稱圖形,據此進行判斷即可.【詳解】解:A、不是軸對稱圖形,符合題意;
B、是軸對稱圖形,不合題意;
C、是軸對稱圖形,不合題意;
D、是軸對稱圖形,不合題意.
故選:A.【點睛】本題考查軸對稱圖形,解題的關鍵是掌握軸對稱圖形的判斷方法:把一個圖形沿一條直線對折,如果圖形的兩部分能夠重合,那么這個是軸對稱圖形.10、A【分析】根據到角的兩邊距離相等的點在角的平分線上判斷出點O是三角形三條角平分線的交點,再根據三角形的內角和定理求出∠ABC+∠ACB,然后求出∠OBC+∠OCB,再利用三角形的內角和定理列式計算即可得解.【詳解】∵O到三邊AB、BC、CA的距離OF=OD=OE,∴點O是三角形三條角平分線的交點,∵,∴∠ABC+∠ACB=180?50=130,∴∠OBC+∠OCB=(∠ABC+∠ACB)=×130=65,在△OBC中,∠BOC=180?(∠OBC+∠OCB)=180?65=115.故選:A.【點睛】本題考查了到角的兩邊距離相等的點在角的平分線上的性質,三角形的內角和定理,要注意整體思想的利用.二、填空題(每小題3分,共24分)11、80°【分析】延長AB到,使得B=AB,延長AD到,使得DA=D,連接、與BC、CD分別交于點M、N,此時△AMN周長最小,然后因為∠AMN=∠BAD-(∠BAM+∠DAN),之后推出∠BAM+∠DAN的值從而得出答案?!驹斀狻咳鐖D,延長AB到,使得B=AB,延長AD到,使得DA=D,連接、與BC、CD分別交于點M、N∵∠ABC=∠ADC=90°∴與A關于BC對稱;與A關于CD對稱此時△AMN周長最小∵BA=B,MB⊥AB∴MA=M同理:NA=N∴∠=∠AM,∠∵∠+∠+∠BAD=180°,且∠BAD=130°∴∠+∠=50°∴∠BAM+∠DAN=50°∴∠MAN=∠BAD-(∠BAM+∠DAN)=130°-50°=80°所以答案為80°【點睛】本題主要考查了軸對稱的性質以及三角形的相關性質,熟練掌握相關概念是解題關鍵。12、【分析】首先根據勾股定理計算出AC的長,進而得到AE的長,再根據A點表示-1,可得點E表示的實數(shù).【詳解】解:∵AD長為2,AB長為1,
∴AC=,∵A點表示-1,
∴點E表示的實數(shù)是,故答案為:.【點睛】本題主要考查了實數(shù)與數(shù)軸和勾股定理,正確得出AC的長是解題關鍵.13、AB=AC(不唯一)【解析】要判定△ABD≌△ACD,已知AD=AD,∠1=∠2,具備了一組邊對應相等,一組對應角相等,故添加AB=AC后可根據SAS判定△ABD≌△ACD.解:添加AB=AC,∵在△ABD和△ACD中,AB=AC,∠1=∠2,AD=AD,∴△ABD≌△ACD(SAS),故答案為AB=AC.14、.【分析】求函數(shù)自變量的取值范圍,就是求函數(shù)解析式有意義的條件,二次根式有意義的條件是:被開方數(shù)為非負數(shù).【詳解】依題意,得x-1≥0,
解得:x≥1.【點睛】本題考查的知識點為:二次根式的被開方數(shù)是非負數(shù).15、m2﹣5m+4【分析】魔術盒的變化為:數(shù)對進去后變成第一個數(shù)減2的差乘以第二個數(shù)減1的差的積.把各個數(shù)對放入魔術盒,計算結果即可.【詳解】解:當數(shù)對(m,2)放入魔術盒,得到的新數(shù)n=(m﹣2)(2﹣1)=m﹣2,把數(shù)對(n,m)放入魔術盒,得到的新數(shù)為:(n﹣2)(m﹣1)=(m﹣2﹣2)(m﹣1)=(m﹣4)(m﹣1)=m2﹣5m+4故答案為:m2﹣5m+4【點睛】本題考查了整式的乘法,多項式乘多項式,即用第一個多項式的每一項乘第二個多項式的每一項,熟練掌握多項式乘多項式是解題的關鍵.16、1【分析】要使滑行的距離最短,則沿著AE的線段滑行,先將半圓展開為矩形,展開后,A、D、E三點構成直角三角形,AE為斜邊,AD和DE為直角邊,求出AD和DE的長,再根據勾股定理求出AE的長度即可.【詳解】將半圓面展開可得,如圖所示:∵滑行部分的斜面是半徑為4m的半圓∴AD=4π米,∵AB=CD=1m,CE=4m,∴DE=DC-CE=AB-CE=16米,
在Rt△ADE中,
AE=m.故答案為:1.【點睛】考查了勾股定理的應用和兩點之間線段最短,解題關鍵是把U型池的側面展開成矩形,“化曲面為平面”,再勾股定理求解.17、1【分析】根據關于y軸對稱的兩點坐標關系:橫坐標互為相反數(shù)、縱坐標相同,即可求出a和b,然后代入求值即可.【詳解】解:∵點和點關于軸對稱∴a=-4,b=-5∴故答案為:1.【點睛】此題考查的是關于y軸對稱的兩點坐標關系,掌握關于y軸對稱的兩點坐標關系:橫坐標互為相反數(shù)、縱坐標相同是解決此題的關鍵.18、2【分析】根據關于y軸對稱點的坐標特點:橫坐標互為相反數(shù),縱坐標不變可得a=-2.b=-3,然后再計算出a-b即可.【詳解】解:∵若A(2,b),B(a,-3)兩點關于y軸對稱,
∴a=-2.b=-3,
∴a-b=-2-(-3)=2,
故答案為:2.【點睛】此題主要考查了關于y軸對稱點的坐標,關鍵是掌握點的坐標的變化規(guī)律.三、解答題(共66分)19、(1)補全一班競賽成績統(tǒng)計圖如圖所示,見解析;(2)a=9;b=9;c=8;d=10;(3)一班成績比二班好.理由見解析.【分析】(1)設一班C等級的人數(shù)為x,根據題意列出方程求解即可;(2)根據已知數(shù)據求出中位數(shù)、眾數(shù)即可;(3)根據平均數(shù)和中位數(shù)做判斷即可;【詳解】(1)設一班C等級的人數(shù)為x,則8.76(6+12+x+5)=6×10+9×12+8x+5×7,解得:x=2,補全一班競賽成績統(tǒng)計圖如圖所示:(2)由題可知總共有25人,則可得一班的中位數(shù)是9,眾數(shù)是9,二班A級人數(shù)是11,B級人數(shù)是1,C級人數(shù)是9,D級人數(shù)是4人,故二班中位數(shù)是8,眾數(shù)是10,∴a=9;b=9;c=8;d=10;(3)一班的平均分和二班的平均分都為8.76分,兩班平均成績都一樣;一班的中位數(shù)9分大于二班的中位數(shù)8分,一班成績比二班好.綜上,一班成績比二班好.【點睛】本題主要考查了數(shù)據分析的知識點,準確計算是解題的關鍵.20、原方程的解為【分析】根據解分式方程的步驟:去分母、解整式方程、驗根、寫結論解答即可.【詳解】去分母得:去括號得:解得:經檢驗是原方程的解所以原方程的解為.【點睛】本題考查解分式方程,掌握解分式方程的步驟是基礎,去分母時確定最簡公分母是關鍵,注意不要漏乘.21、(1)證明見解析;(2)結論:BD=2CF.理由見解析;(3).【分析】(1)欲證明BF=AD,只要證明△BCF≌△ACD即可;(2)結論:BD=2CF.如圖2中,作EH⊥AC于H.只要證明△ACD≌△EHA,推出CD=AH,EH=AC=BC,由△EHF≌△BCF,推出CH=CF即可解決問題;(3)利用(2)中結論即可解決問題.【詳解】(1)證明:如圖1中,∵BE⊥AD于E,∴∠AEF=∠BCF=90°,∵∠AFE=∠CFB,∴∠DAC=∠CBF,∵BC=CA,∴△BCF≌△ACD,∴BF=AD.(2)結論:BD=2CF.理由:如圖2中,作EH⊥AC于H.∵∠AHE=∠ACD=∠DAE=90°,∴∠DAC+∠ADC=90°,∠DAC+∠EAH=90°,∴∠DAC=∠AEH,∵AD=AE,∴△ACD≌△EHA,∴CD=AH,EH=AC=BC,∵CB=CA,∴BD=CH,∵∠EHF=∠BCF=90°,∠EFH=∠BFC,EH=BC,∴△EHF≌△BCF,∴FH=CF,∴BC=CH=2CF.(3)如圖3中,同法可證BD=2CM.∵AC=3CM,設CM=a,則AC=CB=3a,BD=2a,∴.【點睛】本題考查三角形綜合題、全等三角形的判定和性質、等腰直角三角形的性質等知識,解題的關鍵是學會添加常用輔助線,構造全等三角形解決問題,屬于中考壓軸題.22、(1);(2);(3),當a=1時,原式=-1.【分析】(1)根據負指數(shù)冪(n為正整數(shù)),任何一個數(shù)的零指數(shù)冪是1(0除外)以及積的乘方即可求解.(2)利用多項式乘以多項式和完全平方公式把原式展開,再合并同類項即可求解.(3)先將括號里的化成同分母,再把除法轉化為乘法,在取a的值時需要注意,a不能使分母為0.【詳解】解:(1)原式=(2)原式(3)原式=當a=1時,.【點睛】本題主要考查的是實數(shù)的綜合運算,多項式乘多項式以及分式的化簡求值,掌握這幾個知識點是解題的關鍵.23、(1)見解析;(2)【分析】(1)由等腰三角形的性質得出,由平行線的性質得出,得出,由證明,得出;(2)由(1)得:,,設,則,,由勾股定理得出方程,解方程即可.【詳解】(1)證明:,,,,,又,,,在和中,,,;(2)解:由(1)得:,,設,則,,由勾股定理得:,即,解得:,即.【點睛】此題考查等腰三角形的性質、全等三角形的判定與性質、勾股定理;熟練掌握等腰三角形的性質,并能進行推理論證與計算是解題的關鍵.24、(1)120°;(2)1.【分析】(1)、根據角平分線的性質以及AB=AD得出Rt△ABE和Rt△ADF全等,從而得出∠ADF=∠ABE=60°,根據平角得出∠ADC的度數(shù);(2)、根據三角形全等得出FD=BE=1,AF=AE=2,CE=CF=CD+FD=5,最后根據S四邊形AECD=S△AEC+S△ACD得出答案.【詳解】解:(1)∵AC平分∠BCD,AE⊥BC,AF⊥CD,∴∠ACE=∠ACF,∠AEC=∠AFC=10°,∴AE=AF,在Rt△ABE和Rt△ADF中,AE=AF,AB=AD,∴Rt△ABE≌Rt△ADF(HL),∴∠ADF=∠ABE=60°,∴∠CDA=180°-∠ADF=120°;(2)由(1)知Rt△ABE≌Rt△ADF,∴FD=BE=1,AF=AE=2,在△AEC和△AFC中,∠ACE=∠ACF,∠AEC=∠AFC,AC=AC,∴△AEC≌△AFC(AAS),∴CE=CF=CD+FD=5,∴S四邊形AECD=S△AEC+S△ACD=EC·AE+CD·AF=×5×2+×4×2=1.【點睛】本題主要考查的是角平分線的性質、三角形全等的應用以及三角形的面積計算,難度中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度幼兒園兒童安全教育教材及課程開發(fā)協(xié)議
- 2025年度城市綜合體物業(yè)管理服務合同協(xié)議范本
- 2025年產品質量保證協(xié)議文本
- 2025年倉儲場地續(xù)租合同樣本
- 2025年市場擴張戰(zhàn)略策劃咨詢協(xié)議
- 市場調研與分析服務框架協(xié)議
- 2025年飲料酒項目規(guī)劃申請報告模范
- 2025年中藥材市場分析與采購服務合同
- 2025年滌綸短纖項目規(guī)劃申請報告模范
- 2025年鼻毛修剪器項目規(guī)劃申請報告模稿
- 項目考勤表(模板)
- 《鍋爐原理》試題庫及參考答案(學習資料)
- 防呆防錯十大原理及案例分析
- 區(qū)塊鏈金融發(fā)展的現(xiàn)狀、挑戰(zhàn)與前景
- 《我是班級的主人翁》的主題班會
- 產品報價單(5篇)
- GB/T 43153-2023居家養(yǎng)老上門服務基本規(guī)范
- 不銹鋼欄桿施工工藝
- 陜西演藝集團有限公司招聘筆試題庫2023
- 部編人教版二年級道德與法治下冊同步練習(全冊)
- 人教部編道德與法治五年級下冊單元計劃
評論
0/150
提交評論