設(shè)計(jì)表達(dá)基礎(chǔ)課件_第1頁(yè)
設(shè)計(jì)表達(dá)基礎(chǔ)課件_第2頁(yè)
設(shè)計(jì)表達(dá)基礎(chǔ)課件_第3頁(yè)
設(shè)計(jì)表達(dá)基礎(chǔ)課件_第4頁(yè)
設(shè)計(jì)表達(dá)基礎(chǔ)課件_第5頁(yè)
已閱讀5頁(yè),還剩232頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

點(diǎn)、線、面的投影2.1點(diǎn)的投影

按照GB(國(guó)家標(biāo)準(zhǔn))的規(guī)定,機(jī)械制圖按正投影繪制,采用第一象角畫(huà)法點(diǎn)在一個(gè)投影面上的投影--不能定位點(diǎn)在兩投影面體系中投影--可以定位a

點(diǎn)在三投影面上的投影A——空間點(diǎn)

a’——點(diǎn)A的正投影

a——點(diǎn)A的水平投影

a”——點(diǎn)A的側(cè)投影2.1.1

三面投影體系正面?zhèn)让嫠矫?/p>

投影面

正面投影面,簡(jiǎn)稱正面或V面。

水平投影面,簡(jiǎn)稱水平面或H面。

側(cè)面投影面,簡(jiǎn)稱側(cè)面或W面。

投影軸

OX軸——V面與H面的交線

OY軸——H面與W面的交線

OZ軸——V面與W面的交線2.1.2

三投影面的展開(kāi)

V面不動(dòng)

H面繞OX軸向下轉(zhuǎn)90度V,H,W共面

W面繞OZ軸向外轉(zhuǎn)90度A(x,y.z)

a’aOX軸

a’a”O(jiān)Z軸

aax=a”az=y

A到V面的距離

a’ax=a”ay=zA到H面的距離

aay=a’az=x

A到W面的距離2.1.3點(diǎn)的投影規(guī)律yyzxaxayazay

根據(jù)點(diǎn)的兩個(gè)投影求第三投影

2.1.4典型問(wèn)題yyzxaxayazay

判斷兩點(diǎn)間的相對(duì)位置

分析重影點(diǎn)及其投影的可見(jiàn)性

yyzxaxayazaybb'b"

直線垂直于投影面----投影積聚成一點(diǎn)

直線平行于投影面----投影反映實(shí)長(zhǎng)

直線傾斜于投影面----投影仍為直線,但小于實(shí)長(zhǎng)。ABabABABabab垂直平行傾斜積聚性2.2.1.直線的投影特性1.直線對(duì)一個(gè)投影面的投影特性2.2直線的投影實(shí)形性類似性2.直線在三投影體系中的投影特性

投影面平行線

投影面傾斜線——一般位置直線,與三個(gè)投影面都傾斜(1)直線的種類

正平線:平行V面水平線:平行H面?zhèn)绕骄€:平行W面

正垂線:垂直V面鉛垂線:垂直H面?zhèn)却咕€:垂直W面

投影面垂直線(2)投影面平行線

例:已知AB為水平線,求AB的投影。a’abXZYHYwa’b’aba”b”投影特性:

一個(gè)投影反映實(shí)長(zhǎng)及與投影面的夾角

另兩個(gè)投影平行于投影軸(3)投影面垂直線投影特性:

一個(gè)投影有積聚性

另兩個(gè)投影反映實(shí)長(zhǎng)并垂直投影軸aba’b’a”b”XZYHYw與V面夾角與W面夾角(4)一般位置直線投影特性:

三個(gè)投影對(duì)投影軸既不平行也不垂直

三個(gè)投影都不反映實(shí)長(zhǎng)及與投影面的夾角XYwZYHaa’b’ba”b”典型問(wèn)題:求直線的實(shí)長(zhǎng)及其對(duì)投影面的夾角(自學(xué)P87-88)XYwZYHaa’b’ba”b”

a’b’abk’例:已知K在直線AB上,求K點(diǎn)的水平投影k’。a’

b’ab

k’k2.2.2直線與點(diǎn)的相對(duì)位置

點(diǎn)在直線上

點(diǎn)在直線外

若點(diǎn)在直線上,則點(diǎn)的投影必在直線的同名投影上,否則點(diǎn)在直線外。

若點(diǎn)在直線上,則點(diǎn)的投影將直線的同名投影分割成與空間相同的比例。定比定理AC

ac

a’c’CBcbc’b’==BAbacb’c’a’C2.判別方法1.相對(duì)位置的兩種情況ABCDabcdd’c’a’b’2.2.3兩直線的相對(duì)位置1.兩直線平行投影特性若兩直線平行,則其同名投影必平行,反之亦然。abcda’b’c’d’kk’2.兩直線相交兩直線相交的投影規(guī)律:

同名投影必相交

交點(diǎn)符合點(diǎn)的投影規(guī)律BCKabkcda’b’c’d’k’DA3.兩直線交叉投影特征:

同名投影可能相交,但“交點(diǎn)”不符合點(diǎn)的投影規(guī)律。

“交點(diǎn)”代表兩直線上的一對(duì)重影點(diǎn)。

利用重影點(diǎn)可以幫助想象兩直線在空間的相對(duì)位置。abcda’b’c’d’1’2’1(2)434’(3’)ABCabc3.直線與直線垂直直角的投影特性:

若直角中有一條邊平行于某一投影面,則它在該投影面上的投影仍為直角。

相互垂直的兩直線(相交或交叉)當(dāng)中,至少有一條直線平行于某投影面時(shí),這兩條直線在該投影面上的投影才相互垂直。a’b’

c’ab

c2.3平面的投影2.3.1平面的表示方法

用幾何形狀表示三點(diǎn)直線和點(diǎn)兩平行線兩相交線平面圖形a’ab’

c’bc

a’ab’b

c’ca

b’bc’cdd’a’abb’c’ca’a’c’abb’c2.3.2平面的投影特性1.平面對(duì)一個(gè)投影面的投影特性平行垂直傾斜投影特性

平面平行投影面——投影反映實(shí)形,實(shí)形性

平面垂直投影面——投影積聚成直線,積聚性

平面傾斜投影面——投影有類似性ABCabcABCabcABCacb2.平面在三投影面體系中的投影平面的分類:

投影面平行面

投影面垂直面

投影面傾斜面——一般位置平面

正平面

水平面

側(cè)平面

正垂面

鉛垂面

側(cè)垂面特殊位置平面(1)投影面平行面空間分析

——平行一個(gè)投影面,與另外兩個(gè)投影面垂直。投影反映實(shí)形投影有積聚性投影特征:在所平行的投影面上的投影反映實(shí)形,另外兩個(gè)投影積聚成直線,且與相應(yīng)的投影軸平行。a’b’c’a”b”c”a’b’c’acba”b”c”(2)投影面垂直面空間分析

——只垂直一個(gè)投影面,對(duì)另外兩個(gè)投影面傾斜。投影有積聚性投影有類似性投影特征:在所垂直的投影面上的投影積聚成直線,它與投影軸的夾角反映了平面與相應(yīng)的投影面之間的夾角;另外兩個(gè)投影具有類似性。(3)一般位置平面空間分析:對(duì)三個(gè)投影面都傾斜,三個(gè)投影都不反映實(shí)形,也沒(méi)有積聚性。投影特征:三個(gè)投影有類似性a’b’c’abcb”c”a”a’b’c’abc2.3.3平面上的直線和點(diǎn)1.在平面上取直線定理1若一直線過(guò)平面上的兩點(diǎn),則直線在平面內(nèi)。定理2若一直線過(guò)平面上的一點(diǎn)且平行于平面內(nèi)的一條直線,則該直線在平面內(nèi)。例:已知平面由AB,CD所確定,試在平面上任作一直線。已知平面的投影,如何確定平面上某條直線的投影?a’b’c’abcd’d2.平面上取點(diǎn)面上取點(diǎn)的方法先在平面內(nèi)作一直線,然后在此直線上取點(diǎn)。即面上取點(diǎn)先取線。例:已知K點(diǎn)在平面ABC上,求K點(diǎn)的水平投影。

a’b’c’k’abc

ka’b’c’k’abc

k小結(jié)一點(diǎn)的三面投影及投影規(guī)律點(diǎn)的投影與空間坐標(biāo)的關(guān)系根據(jù)點(diǎn)的兩個(gè)投影求第三投影判斷兩點(diǎn)間的相對(duì)位置重影點(diǎn)及其投影的可見(jiàn)性gg’n例:直線MN與平面ABC平行,求MN的水平投影。

a’

b’c’d’abcdk’k例:已知平面P由兩平行線確定,試過(guò)K點(diǎn)作一直線與平面P平行,同時(shí)與H面平行。

特殊情況:

若一直線平行于投影面垂直面,則具有積聚性的那個(gè)投影必與直線的同名投影平行。

a’b’c’abcm’n’m特殊情況:若兩投影面垂直面相互平行,則它們具有積聚性的那組投影也平行。

一般情況:若一平面上的兩相交直線對(duì)應(yīng)地平行另一平面的兩相交直線,則兩平面平行。2.平面與平面平行a’b’c’abcmnpm’p’n’abca’b’c’d’e’f’g’dfeg3.2幾何元素間的相交問(wèn)題

直線與直線相交

直線與平面相交

平面與平面相交空間分析:直線與直線相交——交點(diǎn)

兩直線的公有點(diǎn)直線與平面相交——交點(diǎn)

直線與平面的公有點(diǎn)平面與平面相交——交線

兩平面的公有線要解決的問(wèn)題:

如何求出交點(diǎn)或交線?即如何求出共有部分?

幾何元素存在相互遮擋問(wèn)題,如何判斷可見(jiàn)性?1.平面與平面相交如何求交線?

兩個(gè)平面中至少有一個(gè)為特殊位置時(shí),利用積聚性。

兩個(gè)平面均為一般位置時(shí),用輔助平面法??臻g分析:交線——兩平面的公有線;交線上的點(diǎn)——兩面的公有點(diǎn)。因此,只要確定兩平面的兩個(gè)公有點(diǎn)或一個(gè)公有點(diǎn)和交線的方向,則交線即可作出。a’b’c’abcdeff’d’

abcdfed’f’a’b’e’c’

e'2.直線與平面相交

直線為特殊位置時(shí)的情況,利用直線的積聚性。

平面為特殊位置時(shí)的情況,利用平面的積聚性。

平面和直線都處于一般位置時(shí)的情況,利用輔助平面法。abedfe’f’d’a’b’k’

k

a’b’d’e’f’defabk’

k

例:求直線AB與平面DEF的交點(diǎn)并判斷可見(jiàn)性3.3兩直線所成角度的投影1.任意角的投影特性:任意角的兩條邊都平行于投影面時(shí)---投影反映該角實(shí)大任意角的兩條邊都不平行于投影面時(shí)---投影不反映該角實(shí)大2.直角的投影特性:

若直角中有一邊平行于投影面時(shí)---投影仍為直角

若直角的投影仍是直角---被投影的角至少有一邊平行于投影面結(jié)論:相互垂直的兩直線(相交或交叉)中,至少有一條直線平行于投影面時(shí),其投影才相互垂直。3.4幾何元素間的垂直問(wèn)題1.直線與平面相互垂直

若直線垂直平面,則直線的水平投影一定垂直該平面上水平線的水平投影,則直線的正面投影一定垂直該平面上正平線的正面投影。

若直線垂直平面,則直線的各投影投影一定垂直該平面的同名跡線。典型問(wèn)題:

過(guò)一點(diǎn)作一直線,與已知的一般位置平面垂直。

過(guò)一點(diǎn)作一平面,與已知的一般位置直線垂直。2.直線與直線相互垂直典型問(wèn)題:

過(guò)一點(diǎn)作一直線,與已知的一般位置直線垂直相交。3.平面與平面相互垂直定理:若一平面通過(guò)另一平面的垂線,則兩平面相互平行。應(yīng)用:

使平面過(guò)已知平面的一條垂線。

使平面垂直于已知平面上的一條直線。典型問(wèn)題:

過(guò)一直線作一平面,與已知平面垂直。

過(guò)一點(diǎn)作一平面,與已知平面垂直。4.解題要點(diǎn)空間分析(想空間)--劃分解題步驟--作出投影VHABa’b’ab4.2選擇新投影面的原則P1a1b11.新投影面必須對(duì)空間的幾何元素處于最有利的解題位置2.新投影面必須垂直于一個(gè)原投影面

平行于新的投影面

垂直于新的投影面4.3點(diǎn)的一次換面

舊投影體系

VH—

新投影體系P1H

—A點(diǎn)的兩個(gè)投影:a,a’A點(diǎn)的兩個(gè)投影:a,a11.新投影體系的建立

VHXP1HX1VHAa’a

axXX1P1a1ax1

2.新舊投影之間的關(guān)系

aa1

X1

a’ax=a1ax1一般規(guī)律:

點(diǎn)的新投影和與它有關(guān)的原投影的連線垂直于新投影軸。

點(diǎn)的新投影到新投影軸的距離等于被代替的投影到原投影軸的距離。3.求新投影的作圖方法

VHXP1HX1

由點(diǎn)的不變投影向新投影軸作垂線,并在垂線上量取一段距離,使這段距離等于被代替的投影到原投影軸的距離。a1ax1

Aa

VHa’axX

4.4點(diǎn)的二次換面P1X1先把V面換成平面P1,P1H,得到中間投影體系P1H

—再把H面換成平面P2,P2

P1,得到新投影體系P1P2

—1.新投影體系的建立X2P2a2ax2

2.點(diǎn)的二次換面作圖

a2X1HP1X2P1P2作圖規(guī)則:

a2a1X2軸,a2ax2=aax1a1

a’aXVH

4.5換面法的四個(gè)基本問(wèn)題1.把一般位置直線變成投影面平行線例:求直線AB的實(shí)長(zhǎng)及與H面的夾角VHABa’b’ab空間分析:用P1面代替V面,在P1/H投影體系中,AB//P1。

a1b1a’b’abXVHX1HP1思考:換H面行否?P1X1a1b1VHAa’aP1a1XX1Bb’b12.把一般位置直線變成投影面垂直線空間分析:一次換面把直線變成投影面平行線,二次換面把投影面平行線變成投影面垂直線。X2a2b2P2

例:求點(diǎn)C到直線AB的距離,并求垂足D。d’dd1X1HP1X2P1P2a2

b2

d2

c2

c1

c’b’a’cabXVH

a1b1空間分析:求C點(diǎn)到直線AB的距離,就是要求垂線CD的實(shí)長(zhǎng)。當(dāng)直線AB垂直投影面時(shí),CD平行投影面,反映實(shí)長(zhǎng)。PABDCca

b

d3.把一般位置平面變成投影面垂直面空間分析:如果把平面內(nèi)的一條直線變成投影面垂直線,則平面變成投影面垂直面,因此在平面內(nèi)作一條投影面平行線,經(jīng)一次換面后,變成投影面垂直線,平面變成投影面垂直面。a’b’c’abcdVHABCDXP1X1c1b1a1

d1a’b’c’acbXVH例:把三角形ABC變成投影面垂直面c1a1d1d1HP1X14.把一般位置平面變成投影面平行面空間分析:變換一次投影面,把一般位置平面變成輔助投影面P1的垂直面;選取輔助投影面P2進(jìn)行二次換面,使一般位置平面平行于輔助投影面P2。例:在平面ABC中,過(guò)C點(diǎn)作直線CD與AB成60o角。b2aba’c’b’XVHcc2d2d’dc1a1

b1X1HP1X1P1P2a25.1.2三面投影與三視圖1.視圖的概念視圖

——體的投影主視圖——體的正面投影俯視圖

——體的水平投影左視圖

——體的側(cè)面投影2.三視圖之間的度量關(guān)系三個(gè)視圖有聯(lián)系主視俯視長(zhǎng)對(duì)正主視左視高平齊俯視左視寬相等長(zhǎng)對(duì)正高平齊寬相等七言絕句三字真言三等關(guān)系!長(zhǎng)高寬寬3.三視圖之間的方位對(duì)應(yīng)關(guān)系

主視圖反映:上、下,左、右

俯視圖反映:前、后,左、右

左視圖反映:上、下,前、后上下左右后前上下前后ABCDFE左右5.2基本體的形成及其三視圖5.2.1常見(jiàn)的基本幾何體基本體平面基本體曲面基本體5.2.2平面基本體1.棱柱

棱柱的組成上下兩底面——多邊形若干側(cè)棱面棱線——側(cè)棱面的交線棱線數(shù)——三棱柱,四棱柱…..

直棱柱——棱線垂直底面

棱柱的三視圖

棱柱面上取點(diǎn)

a’

a

a”2.棱錐

棱錐的組成一個(gè)底面——多邊形若干側(cè)棱面錐頂——側(cè)棱線的交匯點(diǎn)側(cè)棱線數(shù)目——三棱錐,四棱錐…...

棱錐的三視圖

在棱錐面上取點(diǎn)

k’

k

k”a’b’c’abca”(c”)bs’

s

s”

5.2.3回轉(zhuǎn)體1.圓柱體

圓柱體的組成兩底面——圓圓柱面——母線繞軸線旋轉(zhuǎn)而成

圓柱體的三視圖

輪廓線與曲面的可見(jiàn)性

圓柱面上取點(diǎn)

a’

a

a”s”ss’2.圓錐體

圓錐體的組成底面——圓圓錐面——母線繞軸線旋轉(zhuǎn)而成錐頂

圓錐體的三視圖

輪廓線與曲面的可見(jiàn)性

圓錐面上取點(diǎn)

k’

k”

k3.圓球

圓球的形成圓母線以直徑為軸旋轉(zhuǎn)而成

圓球的三視圖

輪廓圓與可見(jiàn)性

圓球面上取點(diǎn)

k’

k

k”第九章軸測(cè)圖9.1軸測(cè)圖的基本知識(shí)

將物體和確定其空間位置的直角坐標(biāo)系,沿不平行于任一坐標(biāo)面的方向,用平行投影法將其投射在單一投影面上所得的具有立體感的圖形叫做軸測(cè)圖。投射方向垂直于軸測(cè)投影面

——正軸測(cè)圖。投射方向傾斜于軸測(cè)投影面

——斜軸測(cè)圖。一、軸測(cè)圖的形成1.正軸測(cè)圖的形成

改變物體和投影面的相對(duì)位置,使物體的正面、頂面和側(cè)面與投影面都處于傾斜位置,用正投影法作出物體的投影。投影面▲

用正投影法▲物體與投影面傾斜O(jiān)1X1Y1Z1OXYZ

不改變物體與投影面的相對(duì)位置,改變投射線的方向,使投射線與投影面傾斜。2.斜軸測(cè)圖的形成投影面▲

用斜投影法▲

不改變物體與投影面的相對(duì)位置(物體正放)OYXZO1X1Y1Z1二、兩個(gè)基本概念和一條基本規(guī)律1.軸測(cè)軸和軸間角X1O1Y1,X1O1Z1,

Y1O1Z1坐標(biāo)軸軸測(cè)軸

物體上OX,OY,OZ投影面上O1X1,O1Y1,O1Z1

建立在物體上的坐標(biāo)軸在投影面上的投影叫做軸測(cè)軸,軸測(cè)軸間的夾角叫做軸間角。軸間角投影面OXYZO1X1Y1Z1投影面O1X1Y1Z1OYXZ2.軸向伸縮系數(shù)O1A1OA=pX軸軸向伸縮系數(shù)O1B1OB=qY軸軸向伸縮系數(shù)O1C1OC=rZ軸軸向伸縮系數(shù)

物體上平行于坐標(biāo)軸的線段在軸測(cè)圖上的長(zhǎng)度與實(shí)際長(zhǎng)度之比叫做軸向伸縮系數(shù)。投影面OXYZO1X1Y1Z1投影面O1X1Y1Z1OYXZAAC1B1B1A1A1BBCCC13.平行性規(guī)律

在原物體與軸測(cè)投影間保持以下關(guān)系:★兩直線平行,它們的軸測(cè)投影也平行。物體上與坐標(biāo)軸平行的直線,其軸測(cè)投影有何特征?★兩平行線段的軸測(cè)投影長(zhǎng)度與空間長(zhǎng)度的比值相等。平行于相應(yīng)的軸測(cè)軸

凡是與坐標(biāo)軸平行的直線,就可以在軸測(cè)圖上沿軸向進(jìn)行度量和作圖。三、軸測(cè)圖分類軸測(cè)圖正軸測(cè)圖正等軸測(cè)圖

p=q=r正二軸測(cè)圖p=rq正三軸測(cè)圖pqr斜軸測(cè)圖斜等軸測(cè)圖p=q=r斜二軸測(cè)圖

p=rq斜三軸測(cè)圖pqr正等軸測(cè)圖斜二軸測(cè)圖9.2正等軸測(cè)圖一、軸向伸縮系數(shù)及軸間角軸向伸縮系數(shù):p=q=r=0.82軸間角:

X1O1Y1=X1O1Z1=

Y1O1Z1=120°Z1X1Y1O1簡(jiǎn)化軸向伸縮系數(shù):p=q=r=1OOOXXYYZZA●例1:畫(huà)三棱錐的正等軸測(cè)圖X1O1Y1Z1二、平面體的正等軸測(cè)圖畫(huà)法⒈坐標(biāo)法B●C●S●c

s

s

a

b

c

a

b

sabc例2:已知三視圖,畫(huà)軸測(cè)圖。⒉切割法例3:已知三視圖,畫(huà)軸正等測(cè)圖。⒊疊加法三、回轉(zhuǎn)體的正等軸測(cè)圖畫(huà)法⒈平行于各個(gè)坐標(biāo)面的橢圓的畫(huà)法平行于H面的橢圓長(zhǎng)軸⊥O1Z1軸平行于V面的橢圓長(zhǎng)軸⊥O1Y1軸X1Y1Z1平行于W面的橢圓長(zhǎng)軸⊥O1X1軸畫(huà)法:☆畫(huà)圓的外切菱形☆確定四個(gè)圓心和半徑☆分別畫(huà)出四段彼此相切的圓?。ㄒ云叫杏贖面的圓為例)四心橢圓法●●●●abefdddF1E1●●B1A1●●例:畫(huà)圓臺(tái)的正等軸測(cè)圖⒉圓角的正等軸測(cè)圖的畫(huà)法●O2●D1C1B1O1A1●G1●O5●O4●G2●D2E2●簡(jiǎn)便畫(huà)法:★截取O1D1=O1G1=A1E1=A1F1

=圓角半徑★作O2D1⊥O1A1,O2G1⊥O1C1O3E1⊥O1A1,O3F1⊥A1B1★分別以O(shè)2、

O3為圓心,O2D1、

O3E1為半徑畫(huà)圓弧★定后端面的圓心,畫(huà)后端面的圓弧★定后端面的切點(diǎn)D2、G2、E2★作公切線例:●F1●E1O3●第六章平面體及回轉(zhuǎn)體的截切截切:用一個(gè)平面與立體相交,截去立體的一部分。

截平面

——用以截切物體的平面。

截交線

——截平面與物體表面的交線。

截?cái)嗝?/p>

——因截平面的截切,在物體上形成的平面。討論的問(wèn)題:截交線的分析和作圖。6.1平面體的截切一、平面截切的基本形式

截交線是一個(gè)由直線組成的封閉的平面多邊形,其形狀取決于平面體的形狀及截平面對(duì)平面體的截切位置。

截交線的每條邊是截平面與棱面的交線。求截交線的實(shí)質(zhì)是求兩平面的交線截交線的性質(zhì):二、平面截切體的畫(huà)圖⒈求截交線的兩種方法:★求各棱線與截平面的交點(diǎn)→棱線法?!锴蟾骼饷媾c截平面的交線→棱面法。關(guān)鍵是正確地畫(huà)出截交線的投影。⒉求截交線的步驟:☆截平面與體的相對(duì)位置☆截平面與投影面的相對(duì)位置確定截交線的投影特性確定截交線的形狀★空間及投影分析★畫(huà)出截交線的投影

分別求出截平面與棱面的交線,并連接成多邊形。例1:求四棱錐被截切后的俯視圖和左視圖。3

2

1

(4

)1

●2

●4

●3

●1●2●4●★空間分析交線的形狀?3●★投影分析★求截交線★分析棱線的投影★檢查尤其注意檢查截交線投影的類似性截平面與體的幾個(gè)棱面相交?截交線在俯、左視圖上的形狀?例1:求四棱錐被截切后的俯視圖和左視圖。我們采用的是哪種解題方法?棱線法!例2:求四棱錐被截切后的俯視圖和左視圖。121

(2

)Ⅰ、Ⅱ兩點(diǎn)分別同時(shí)位于三個(gè)面上。三面共點(diǎn):2

●1

注意:要逐個(gè)截平面分析和繪制截交線。當(dāng)平面體只有局部被截切時(shí),先假想為整體被截切,求出截交線后再取局部。例2:求四棱錐被截切后的俯視圖和左視圖。例3:求八棱柱被平面P截切后的俯視圖。P

截交線的形狀?ⅠⅡⅢⅣⅤⅥⅦⅧ1

5

4

3

2

8

7

6

截交線的投影特性?2

≡3

≡6

≡7

1

≡8

4

≡5

求截交線15476328分析棱線的投影檢查截交線的投影例3:求八棱柱被平面P截切后的俯視圖。6.2回轉(zhuǎn)體的截切一、回轉(zhuǎn)體截切的基本形式截交線的性質(zhì):

截交線是截平面與回轉(zhuǎn)體表面的共有線。

截交線的形狀取決于回轉(zhuǎn)體表面的形狀及

截平面與回轉(zhuǎn)體軸線的相對(duì)位置。

截交線都是封閉的平面圖形。二、求平面與回轉(zhuǎn)體的截交線的一般步驟

⒈空間及投影分析☆分析回轉(zhuǎn)體的形狀以及截平面與回轉(zhuǎn)體軸線的相對(duì)位置,以便確定截交線的形狀?!罘治鼋仄矫媾c投影面的相對(duì)位置,明確截交

線的投影特性,如積聚性、類似性等。找出截交線的已知投影,預(yù)見(jiàn)未知投影。⒉畫(huà)出截交線的投影當(dāng)截交線的投影為非圓曲線時(shí),其作圖步驟為:☆將各點(diǎn)光滑地連接起來(lái),并判斷截交線的可見(jiàn)性?!钕日姨厥恻c(diǎn),補(bǔ)充中間點(diǎn)。㈠圓柱體的截切

截平面與圓柱面的截交線的形狀取決于截平面與圓柱軸線的相對(duì)位置垂直圓橢圓平行兩平行直線傾斜P(pán)VPPVPPVP例1:求左視圖★空間及投影分析★求截交線★分析圓柱體輪廓素線的投影截平面與體的相對(duì)位置截平面與投影面的相對(duì)位置●●解題步驟:

同一立體被多個(gè)平面截切,要逐個(gè)截平面進(jìn)行截交線的分析和作圖?!瘛窭?:求左視圖★空間及投影分析★求截交線★分析圓柱體輪廓素線的投影截平面與體的相對(duì)位置截平面與投影面的相對(duì)位置解題步驟:例2:求左視圖●●●●例2:求左視圖例3:求俯視圖例3:求俯視圖截交線的已知投影?●●●●●●●●●●●●例4:求左視圖★找特殊點(diǎn)★補(bǔ)充中間點(diǎn)★光滑連接各點(diǎn)★分析輪廓素線的投影截交線的側(cè)面投影是什么形狀?截交線的空間形狀?例4:求左視圖★找特殊點(diǎn)★找中間點(diǎn)★光滑連接各點(diǎn)★分析輪廓素線的投影

橢圓的長(zhǎng)、短軸隨截平面與圓柱軸線夾角的變化而改變。45°什么情況下投影為圓呢?截平面與圓柱軸線成45°時(shí)。例5:求左視圖例5:求左視圖虛實(shí)分界點(diǎn)㈡圓錐體的截切

根據(jù)截平面與圓錐軸線的相對(duì)位置不同,截交線有五種形狀。過(guò)錐頂兩相交直線PV圓PVθθ=90°PV橢圓αθθ>α拋物線PVθαθ=α雙曲線PVαθ=0°<α例:圓錐被正垂面截切,求截交線,并完成三視圖。截交線的空間形狀?截交線的投影特性?★找特殊點(diǎn)如何找橢圓另一根軸的端點(diǎn)?★補(bǔ)充中間點(diǎn)★光滑連接各點(diǎn)★分析輪廓線的投影例:圓錐被正垂面截切,求截交線,并完成三視圖。㈢球體的截切

平面與圓球相交,截交線的形狀都是圓,但根據(jù)截平面與投影面的相對(duì)位置不同,其截交線的投影可能為圓、橢圓或積聚成一條直線。例:求半球體截切后的俯視圖和左視圖。水平面截圓球的截交線的投影,在俯視圖上為部分圓弧,在側(cè)視圖上積聚為直線。兩個(gè)側(cè)平面截圓球的截交線的投影,在側(cè)視圖上為部分圓弧,在俯視圖上積聚為直線。例:求半球體截切后的俯視圖和左視圖?!瘛瘛瘛瘛瘛瘛瘛瘛瘛瘼鑿?fù)合回轉(zhuǎn)體的截切●●●●●●

首先分析復(fù)合回轉(zhuǎn)體由哪些基本回轉(zhuǎn)體組成以及它們的連接關(guān)系,然后分別求出這些基本回轉(zhuǎn)體的截交線,并依次將其連接。例:求作頂尖的俯視圖

小結(jié)

一、平面體的截交線一般情況下是由直線組成的封閉的平面多邊形,多邊形的邊是截平面與棱面的交線。求截交線的方法:棱線法棱面法二、平面截切回轉(zhuǎn)體,截交線的形狀取決于截平面與被截立體軸線的相對(duì)位置。

截交線是截平面與回轉(zhuǎn)體表面的共有線。

當(dāng)截交線的投影為非圓曲線時(shí),要先找特殊點(diǎn),再補(bǔ)充中間點(diǎn),最后光滑連接各點(diǎn)。注意分析平面體的棱線和回轉(zhuǎn)體輪廓素線的投影。⑵分析截平面與被截立體對(duì)投影面的相對(duì)位置,以確定截交線的投影特性。⒉求截交線三、解題方法與步驟⒈空間及投影分析⑴分析截平面與被截立體的相對(duì)位置,以

確定截交線的形狀。平面體與回轉(zhuǎn)體相貫回轉(zhuǎn)體與回轉(zhuǎn)體相貫多體相貫7.1概述1.相貫的形式

兩立體相交叫作相貫,其表面產(chǎn)生的交線叫做相貫線。

本章主要討論常用不同立體相交時(shí)其表面相貫線的投影特性及畫(huà)法。2.相貫線的主要性質(zhì)

其作圖實(shí)質(zhì)是找出相貫的兩立體表面的若干共有點(diǎn)的投影?!锕灿行浴锉砻嫘韵嘭灳€位于兩立體的表面上。相貫線是兩立體表面的共有線?!锓忾]性

相貫線一般是封閉的空間折線(通常由直線和曲線組成)或空間曲線。1.相貫線的性質(zhì)

相貫線是由若干段平面曲線(或直線)所組成的空間折線,每一段是平面體的棱面與回轉(zhuǎn)體表面的交線。7.2平面體與回轉(zhuǎn)體相貫2.作圖方法

分析各棱面與回轉(zhuǎn)體表面的相對(duì)位置,從而確定交線的形狀。

求出各棱面與回轉(zhuǎn)體表面的截交線。

連接各段交線,并判斷可見(jiàn)性。

求交線的實(shí)質(zhì)是求各棱面與回轉(zhuǎn)面的截交線。例1:補(bǔ)全主視圖

空間分析:四棱柱的四個(gè)棱面分別與圓柱面相交,前后兩棱面與圓柱軸線平行,截交線為兩段直線;左右兩棱面與圓柱軸線垂直,截交線為兩段圓弧。

投影分析:由于相貫線是兩立體表面的共有線,所以相貫線的側(cè)面投影積聚在一段圓弧上,水平投影積聚在矩形上。例1:補(bǔ)全主視圖例2:求作主視圖例2:求作主視圖1.相貫線的性質(zhì)

相貫線一般為光滑封閉的空間曲線,它是兩回轉(zhuǎn)體表面的共有線。7.3回轉(zhuǎn)體與回轉(zhuǎn)體相貫2.求交線方法

利用投影的積聚性直接找點(diǎn)。

用輔助平面法。

先找特殊點(diǎn)。⒊作圖過(guò)程

補(bǔ)充中間點(diǎn)。確定交線的彎曲趨勢(shì)確定交線的范圍

用輔助球面法。一、利用積聚性求相貫線例1:圓柱與圓柱相貫,求其相貫線?!瘛瘛瘛瘛瘛瘛瘛瘛?/p>

空間及投影分析:小圓柱軸線垂直于H面,水平投影積聚為圓,根據(jù)相貫線的共有性,相貫線的水平投影即為該圓。大圓柱軸線垂直于W面,側(cè)面投影積聚為圓,相貫線的側(cè)面投影在該圓上。求相貫線的投影:

利用積聚性,采用表面取點(diǎn)法?!钫姨厥恻c(diǎn)☆補(bǔ)充中間點(diǎn)☆光滑連接例1:圓柱與圓柱相貫,求其相貫線。二、輔助平面法求相貫線例2:圓柱與圓錐相貫,求其相貫線的投影?!艨臻g及投影分析:

相貫線為一光滑的封閉的空間曲線。它的側(cè)面投影有積聚性,正面投影、水平投影沒(méi)有積聚性,應(yīng)分別求出。◆解題方法:輔助平面法輔助平面法:

根據(jù)三面共點(diǎn)的原理,利用輔助平面求出兩回轉(zhuǎn)體表面上的若干共有點(diǎn),從而畫(huà)出相貫線的投影。作圖方法:

假想用輔助平面截切兩回轉(zhuǎn)體,分別得出兩回轉(zhuǎn)體表面的截交線。由于截交線的交點(diǎn)既在輔助平面內(nèi),又在兩回轉(zhuǎn)體表面上,因而是相貫線上的點(diǎn)。輔助平面的選擇原則:

使輔助平面與兩回轉(zhuǎn)體表面的截交線的投影簡(jiǎn)單易畫(huà),例如直線或圓。一般選擇投影面平行面例2:圓柱與圓錐相貫,求其相貫線的投影。

假想用水平面P截切立體,P面與圓柱體的截交線為兩條直線,與圓錐面的交線為圓,圓與兩直線的交點(diǎn)即為交線上的點(diǎn)。P●●●●●例2:圓柱與圓錐相貫,求其相貫線的投影?!瘛瘛瘛瘛瘛瘛瘛瘛瘛瘛瘛窠忸}步驟:★求特殊點(diǎn)★用輔助平面法求中間點(diǎn)★光滑連接各點(diǎn)例2:圓柱與圓錐相貫,求其相貫線的投影。解題步驟:★求特殊點(diǎn)★用輔助平面法求中間點(diǎn)★光滑連接各點(diǎn)三、輔助球面法求相貫線四、多形體相交123例3:補(bǔ)全主視圖●●●●●●●●

這是一個(gè)多體相貫的例子,首先分析它是由哪些基本體組成的,這些基本體是如何相貫的,然后分別進(jìn)行相貫線的分析與作圖。由哪些立體組成呢?哪兩個(gè)立體相貫?1與21與32與3例3:補(bǔ)全主視圖三面共點(diǎn)●●●

作圖時(shí)要抓住一個(gè)關(guān)鍵點(diǎn),相貫線匯交于這一點(diǎn)。哪個(gè)點(diǎn)呢?五、不完全形體相交

小結(jié)

一、本章的基本內(nèi)容⒈立體表面相貫線的概念⒉求相貫線的基本方法相貫線的性質(zhì):表面性共有性封閉性二、解題過(guò)程⒈交線分析⑴

空間分析:⑵投影分析:

是否有積聚性投影?找出相貫線的已知投影,預(yù)見(jiàn)未知投影,從而選擇解題方法。利用積聚性面上找點(diǎn)法,輔助平面法,輔助球面法

分析相交兩立體的表面形狀,形體大小及相對(duì)位置,預(yù)見(jiàn)交線的形狀。特殊點(diǎn)包括:最上點(diǎn)、最下點(diǎn)、最左點(diǎn)、最右點(diǎn)、最前點(diǎn)、最后點(diǎn)、輪廓線上的點(diǎn)等。⒉作圖⑴找點(diǎn)⑵連線⑶檢查、加深尤其注意檢查回轉(zhuǎn)體輪廓素線的投影。

當(dāng)相貫線的投影為非圓曲線時(shí),其作圖步驟為:☆先找特殊點(diǎn)☆補(bǔ)充若干中間點(diǎn)三、平面體與圓柱體相貫⒈相貫線的產(chǎn)生:⒉求相貫線的方法:⒊相貫線的形狀及投影:外表面與外表面相交,外表面與內(nèi)表面相交,內(nèi)表面與內(nèi)表面相交。

求平面體的棱面與圓柱面的截交線,依次連接起來(lái)。

相貫線為封閉的空間折線。相貫線在非積聚性投影上總是向被穿的圓柱體里面彎折,而且在兩體相交區(qū)域內(nèi)不應(yīng)有圓柱體輪廓線的投影。四、兩圓柱體相貫⒈相貫線的產(chǎn)生:⒉求相貫線的方法:⒊相貫線的形狀及投影:外表面與外表面相交,外表面與內(nèi)表面相交,內(nèi)表面與內(nèi)表面相交。

常用的方法是利用積聚性表面取點(diǎn),也可用輔助平(球〕面法。

相貫線為光滑封閉的空間曲線。當(dāng)兩圓柱正交,小圓柱穿大圓柱時(shí),相貫線在非積聚性投影上總是向大圓柱里彎曲,當(dāng)兩圓柱直徑相等時(shí),相貫線在空間為兩個(gè)橢圓,其投影變?yōu)橹本€。在兩體相交區(qū)域內(nèi)不應(yīng)有圓柱體輪廓線的投影。五、多體相貫

每個(gè)局部都是兩體相貫,首先分析它是由哪些基本體組成的,然后兩兩進(jìn)行相貫線的分析與作圖。六、不完全形體相交方法:把形體補(bǔ)充完整●●●●●●●●●●例4:求俯視圖●●●●●●●●8.1組合體的組成方式組合體——由平面體和曲面體組成的物體一、組合體的組成方式⒈疊加疊加的形式包括:表面平齊疊加表面不平齊疊加對(duì)稱疊加非對(duì)稱疊加同軸疊加⒉相交⒊截切(a)平齊(c)不平齊二、形體之間的表面過(guò)渡關(guān)系(b)前面平齊后面不平齊虛線實(shí)線⒈兩形體疊加時(shí)的表面過(guò)渡關(guān)系

無(wú)線無(wú)線無(wú)線無(wú)線⒉兩形體表面相切時(shí),相切處無(wú)線?!裼芯€有線⒊兩形體相交時(shí),在相交處應(yīng)畫(huà)出交線。三、組合體的畫(huà)圖和讀圖方法

根據(jù)組合體的形狀,將其分解成若干部分,弄清各部分的形狀和它們的相對(duì)位置及組合方式,分別畫(huà)出各部分的投影,再綜合起來(lái)表達(dá)整體。形體分析法:

視圖上的一個(gè)封閉線框,一般情況下代表一個(gè)面的投影,不同線框之間的關(guān)系,反映了物體表面的變化。面形分析法:8.2組合體的畫(huà)圖方法一、畫(huà)圖步驟及要領(lǐng)

對(duì)組合體進(jìn)行形體分解——分塊

按照各塊的主次和相對(duì)位置關(guān)系,逐個(gè)畫(huà)出它們的投影。

分析及正確表示各部分形體之間的表面過(guò)渡關(guān)系

檢查、加深。

弄清各部分的形狀及相對(duì)位置關(guān)系。

凸臺(tái)圓筒支撐板肋板底板二、組合體的畫(huà)圖方法例1:求作軸承座的三視圖

●●●●●例2:求作導(dǎo)向塊的三視圖8.3組合體的看圖方法一、看圖時(shí)需要注意的幾個(gè)問(wèn)題1.要把幾個(gè)視圖聯(lián)系起來(lái)進(jìn)行分析例:例:2.注意抓特征視圖——最能反映物體形狀特征的那個(gè)視圖。形狀特征視圖例:形狀特征視圖——最能反映物體位置特征的那個(gè)視圖。位置特征視圖位置特征視圖二、看圖的方法和步驟看圖的方法看圖的步驟:1.看視圖抓特征

看視圖——

以主視圖為主,配合其它視圖,進(jìn)行初步的投影分析和空間分析。

抓特征——

找出反映物體特征較多的視圖,在較短的時(shí)間里,對(duì)物體有個(gè)大概的了解。形體分析法面形分析法3.綜合起來(lái)想整體

在看懂每部分形體的基礎(chǔ)上,進(jìn)一步分析它們之間的組合方式和相對(duì)位置關(guān)系,從而想象出整體的形狀。2.分解形體對(duì)投影

分解形體——

參照特征視圖,分解形體。

對(duì)投影——

利用“三等”關(guān)系,找出每一部分的三個(gè)投影,想象出它們的形狀。4.面形分析攻難點(diǎn)

一般情況下,形體清晰的零件,用上述形體分析方法看圖就可以解決。但對(duì)于一些較復(fù)雜的零件,特別是由切割體組成的零件,單用形體分析法還不夠,需采用面形分析法。例1:例2:面形分析法利用局部孔和槽分解形體例1:求作俯視圖三、已知兩視圖,求第三視圖⒈由已知視圖看懂物體的形狀⒉畫(huà)第三視圖例1:求作俯視圖例1:求作俯視圖例2:已知物體的主視圖和俯視圖,求側(cè)視圖?!瘛瘛窭?:求作左視圖●●●●●●例3:求作左視圖12.1視圖一、基本視圖

右視圖

主視圖

俯視圖

左視圖

后視圖

仰視圖⒈形成從右向左投射從下向上投射從后向前投射⒉六個(gè)投影面的展開(kāi)主視俯視左視右視后視仰視

除后視圖外,靠近主視圖的一邊是物體的后面,遠(yuǎn)離主視圖的一邊是物體的前面。⒊六面視圖的投影對(duì)應(yīng)關(guān)系長(zhǎng)高寬上下左右前后右左

度量對(duì)應(yīng)關(guān)系:仍遵守“三等”規(guī)律

方位對(duì)應(yīng)關(guān)系:主視俯視仰視左視右視后視長(zhǎng)二、向視圖向視圖是可自由配置的視圖(不按上述六個(gè)位置配置)※在向視圖的上方標(biāo)注字母,在相應(yīng)視圖附近用箭頭指明投射方向,并標(biāo)注相同的字母。CDDBBC自由配置EEFF按基本位置配置三、局部視圖

局部視圖是將物體的某一部分向基本投影面投射所得的視圖。注意事項(xiàng):

用帶字母的箭頭指明要表達(dá)的部位和投射方向,并注明視圖名稱。

局部視圖的范圍用波浪線表示。當(dāng)表示的局部結(jié)構(gòu)是完整的且外輪廓封閉時(shí),波浪線可省略。

局部視圖可按基本視圖的配置形式配置,也可按向視圖的配置形式配置。ABCCAB四、斜視圖問(wèn)題:當(dāng)物體的表面與投影面成傾斜位置時(shí),其投影不反映實(shí)形?!镌鲈O(shè)一個(gè)與傾斜表面平行的輔助投影面。解決方法:★將傾斜部分向輔助投影面投射。VHPA

斜視圖是物體向不平行于基本投影面的平面投射所得的視圖。12.2剖視圖問(wèn)題:

當(dāng)機(jī)件的內(nèi)部形狀較復(fù)雜時(shí),視圖上將出現(xiàn)許多虛線,不便于看圖和標(biāo)注尺寸。解決辦法?采用剖視圖一、剖視圖的概念⒈剖視圖的形成

假想用一剖切面將機(jī)件剖開(kāi),移去剖切面和觀察者之間的部分,將其余部分向投影面投射,并在剖面區(qū)域內(nèi)畫(huà)上剖面符號(hào)。2.剖視圖的畫(huà)法

確定剖切面的位置

想象哪部分移走了?剖面區(qū)域的形狀?哪些部分投射時(shí)可看到?

在剖面區(qū)域內(nèi)畫(huà)上剖面符號(hào)。虛線不畫(huà)AAA-A3.剖視圖的標(biāo)注②剖切符號(hào)

:表示剖切面起、止和轉(zhuǎn)折位置及投射方向。③剖視圖的名稱。標(biāo)注內(nèi)容:①剖切線:指示剖切面的位置。一般情況下可省略。4.畫(huà)剖視圖的注意事項(xiàng)①剖切平面的選擇:通過(guò)機(jī)件的對(duì)稱面或軸線且平行或垂直于投影面。②剖切是一種假想,其它視圖仍應(yīng)完整畫(huà)出,并可取剖視。③剖切面后方的可見(jiàn)部分要全部畫(huà)出。④在剖視圖上已經(jīng)表達(dá)清楚的結(jié)構(gòu),在其它視圖上此部分結(jié)構(gòu)的投影為虛線時(shí),其虛線省略不畫(huà)。但沒(méi)有表示清楚的結(jié)構(gòu),允許畫(huà)少量虛線。⑤不需在剖面區(qū)域中表示材料的類別時(shí),剖面符號(hào)可采用通用剖面線表示。通用剖面線為細(xì)實(shí)線,最好與主要輪廓或剖面區(qū)域的對(duì)稱線成

45°角;同一物體的各個(gè)剖面區(qū)域,其剖面線畫(huà)法應(yīng)一致。⒌幾種結(jié)構(gòu)不同的零件的剖視A-AAABBBB-CC-CC二、剖視的種類及適用條件1.全剖視用剖切面完全地剖開(kāi)物體所得的剖視圖。外形較簡(jiǎn)單,內(nèi)形較復(fù)雜,而圖形又不對(duì)稱時(shí)。適用范圍:AAA-A⒉半剖視不能表達(dá)外形AAA—A存在什么問(wèn)題?解決辦法:以對(duì)稱線為界,一半畫(huà)視圖,一半畫(huà)剖視。半剖視已表達(dá)清楚的內(nèi)形虛線不畫(huà)A—ABB適用范圍:內(nèi)、外形都需要表達(dá),而形狀又基本對(duì)稱時(shí)。AAA-AB-BBB3.局部剖用剖切平面局部地剖開(kāi)物體所得的剖視圖。AAA-AB-BBB3.局部剖用剖切平面局部地剖開(kāi)物體所得的剖視圖。B-BAAA-A

可用雙折線代替波浪線。適用范圍:

局部剖是一種較靈活的表示方法,適用范圍較廣。①只有局部?jī)?nèi)形需要剖切表示時(shí)。②實(shí)心桿上有孔、槽時(shí),應(yīng)采用局部剖視。③當(dāng)對(duì)稱機(jī)件的輪廓線與中心線重合,不宜采用半剖視時(shí)。錯(cuò)誤正確AABBA-AB-B④當(dāng)機(jī)件的內(nèi)外形都較復(fù)雜,而圖形又不對(duì)稱時(shí)。畫(huà)局部剖應(yīng)注意的問(wèn)題:①波浪線不能與圖上的其它圖線重合。錯(cuò)誤正確

波浪線不能穿空而過(guò),也不能超出視圖的輪廓線?!痢痢痢痢立?/p>

當(dāng)被剖結(jié)構(gòu)為回轉(zhuǎn)體時(shí),允許將其中心線作局部剖的分界線。④在一個(gè)視圖中,局部剖的數(shù)量不宜過(guò)多。三、剖切平面的種類及適用條件1.單一剖切平面⑴平行于某一基本投影面AAA-AAA⑵不平行于任何基本投影面(投影面垂直面)☆標(biāo)注方法:☆適用范圍:

當(dāng)機(jī)件具有傾斜部分,同時(shí)這部分內(nèi)形和外形都需表達(dá)時(shí)。A-A☆此剖視可按斜視圖的配置方式配置。A-AA-ABBB-B⒉兩相交的剖切平面☆標(biāo)注方法:☆應(yīng)注意的問(wèn)題:①兩剖切面的交線一般應(yīng)與機(jī)件的軸線重合。②在剖切面后的其它結(jié)構(gòu)仍按原來(lái)位置投射?!钸m用范圍:

當(dāng)機(jī)件的內(nèi)部結(jié)構(gòu)形狀用一個(gè)剖切平面剖切不能表達(dá)完全,且機(jī)件又具有回轉(zhuǎn)軸時(shí)。AAAA-A⒊幾個(gè)平行的剖切平面☆標(biāo)注方法:☆注意問(wèn)題:①兩剖切平面的轉(zhuǎn)折處不應(yīng)與圖上的輪廓線重合,在剖視圖上不應(yīng)在轉(zhuǎn)折處畫(huà)線。②在剖視圖內(nèi)不能出現(xiàn)不完整的要素。只有當(dāng)兩個(gè)要素有公共對(duì)稱中心線或軸線時(shí),可以此為界各畫(huà)一半?!钸m用范圍:

當(dāng)機(jī)件上的孔槽及空腔等內(nèi)部結(jié)構(gòu)不在同一平面內(nèi)時(shí)。AAAAA-AAAAAA-A12.3斷面圖一、斷面圖的概念

假想用剖切面將物體的某處切斷,只畫(huà)出該剖切面與物體接觸部分(剖面區(qū)域)的圖形。二、斷面圖的種類⒈移出斷面圖

畫(huà)在視圖之外,輪廓線用粗實(shí)線繪制。配置在剖切線的延長(zhǎng)線上或其他適當(dāng)?shù)奈恢?。⑴?huà)法☆剖切平面通過(guò)回轉(zhuǎn)面形成的孔或凹坑的軸線時(shí),應(yīng)按剖視畫(huà)?!町?dāng)剖切平面通過(guò)非圓孔,會(huì)導(dǎo)致完全分離的兩個(gè)斷面時(shí),這些結(jié)構(gòu)也應(yīng)按剖視畫(huà)?!钣脙蓚€(gè)或多個(gè)相交的剖切平面剖切得出的移出斷面,中間一般應(yīng)斷開(kāi)。

有時(shí)為了得到完整的剖面圖,也允許中間不斷開(kāi)。⑵移出斷面圖的標(biāo)注方法標(biāo)注內(nèi)容:剖切符號(hào)、斷面圖的名稱。①配置在剖切線的延長(zhǎng)線上的不對(duì)稱的移出斷面圖,可省略名稱(字母)。②配置在剖切線的延長(zhǎng)線上的對(duì)稱的移出斷面圖,可不標(biāo)注。③其余情況需全部標(biāo)注。A-AAABBB-B⒉重合斷面圖

畫(huà)在視圖之內(nèi),輪廓線用細(xì)實(shí)線繪制。當(dāng)視圖中的輪廓線與斷面圖的圖線重合時(shí),視圖中的輪廓線仍應(yīng)連續(xù)畫(huà)出。⑴畫(huà)法⑵標(biāo)注方法①配置在剖切線上的不對(duì)稱的重合斷面圖,可不注名稱(字母)。②對(duì)稱的重合斷面圖,可不標(biāo)注。12.4簡(jiǎn)化畫(huà)法一、肋板的畫(huà)法

對(duì)于機(jī)件的肋板,如按縱向剖切,肋板不畫(huà)剖面符號(hào),而用粗實(shí)線將它與其鄰接部分分開(kāi)。規(guī)則:AAA-ABBB-BB-B正確錯(cuò)誤二、均勻分布的肋板及孔的畫(huà)法肋不對(duì)稱畫(huà)成對(duì)稱孔未剖到畫(huà)成剖到B-BBB

若干直徑相同且成規(guī)律分布的孔,可以僅畫(huà)出一個(gè)或幾個(gè),其余只需用細(xì)點(diǎn)畫(huà)線表示其中心位置。AAA-A實(shí)長(zhǎng)實(shí)長(zhǎng)三、斷開(kāi)的畫(huà)法

軸、桿類較長(zhǎng)的機(jī)件,當(dāng)沿長(zhǎng)度方向形狀相同或按一定規(guī)律變化時(shí),允許斷開(kāi)畫(huà)出。標(biāo)注尺寸時(shí),仍注實(shí)長(zhǎng)。拉桿軸套斷開(kāi)畫(huà)法階梯軸斷開(kāi)畫(huà)法四、對(duì)稱圖形的畫(huà)法

在不致引起誤解時(shí),可只畫(huà)一半或四分之一。并在對(duì)稱中心線的兩端畫(huà)出兩條與其垂直的平行細(xì)實(shí)線。五、機(jī)件上小平面的畫(huà)法

當(dāng)回轉(zhuǎn)體機(jī)件上的平面在圖形中不能充分表達(dá)時(shí),可用相交的兩條細(xì)實(shí)線表示。

小結(jié)

本章所介紹的各種視圖、剖視圖、斷面圖的畫(huà)法及標(biāo)注方法,均系國(guó)標(biāo)規(guī)定,必須經(jīng)過(guò)反復(fù)實(shí)踐很好地掌握,才能畫(huà)出合格的工作圖紙。但目前主要掌握全剖視圖和半剖視圖的畫(huà)法。

簡(jiǎn)化畫(huà)法只介紹了常用的幾種,這部分內(nèi)容較多,需要時(shí)可查閱有關(guān)標(biāo)準(zhǔn)(GB/T16675.1——1996)。

9.4軸測(cè)圖中的剖切畫(huà)法

為了表示零件的內(nèi)部結(jié)構(gòu)和形狀,常用兩個(gè)剖切平面沿兩個(gè)坐標(biāo)面方向切掉零件的四分之一。一、畫(huà)圖步驟⒈先畫(huà)外形再剖切⒉先畫(huà)斷面的形狀,后畫(huà)可見(jiàn)輪廓。一、標(biāo)注尺寸的基本要求正確:完全:要符合國(guó)家標(biāo)準(zhǔn)的有關(guān)規(guī)定。要標(biāo)注制造零件所需要的全部尺寸,不遺漏,不重復(fù)。清晰:尺寸布置要整齊、清晰,便于閱讀。合理:標(biāo)注的尺寸要符合設(shè)計(jì)要求及工藝要求。10.1標(biāo)注尺寸的基本要求與規(guī)則⒉以毫米為單位,如采用其它單位時(shí),則必須注明單位名稱。⒊圖中所注尺寸為零件完工后的尺寸。⒋每個(gè)尺寸一般只標(biāo)注一次,并應(yīng)標(biāo)注在最能清晰地反映該結(jié)構(gòu)特征的視圖上。⒌尺寸配置合理⑴功能尺寸應(yīng)直接注出。⑵同一要素的尺寸應(yīng)盡可能集中標(biāo)注。如孔的直徑和深度、槽的深度和寬度等。⑶盡量避免在不可見(jiàn)的輪廓線上標(biāo)注尺寸。二、標(biāo)注尺寸的基本規(guī)則⒈尺寸數(shù)值為零件的真實(shí)大小,與繪圖比例及繪圖的準(zhǔn)確度無(wú)關(guān)。這些間距>7毫米,最好不超過(guò)10毫米。尺寸界線尺寸線尺寸界線超出箭頭約2毫米三、尺寸三要素⒈尺寸界線

尺寸界線為細(xì)實(shí)線,并應(yīng)由輪廓線、軸線或?qū)ΨQ中心線處引出,也可用這些線代替。⑴尺寸線為細(xì)實(shí)線,一端或兩端帶有終端符號(hào)(箭頭斜線)。⒉尺寸線⑵尺寸線不能用其它圖線代替,也不得與其它圖線重合。1.5×45°⑶標(biāo)注線性尺寸時(shí)尺寸線必須與所標(biāo)注的線段平行。⒊尺寸數(shù)字⑴一般應(yīng)注在尺寸線的上方,也可注在尺寸線的中斷處。

水平方向字頭向上,垂直方向字頭向左。101.5×45°

16203589尺寸數(shù)字?jǐn)?shù)字高度3.5毫米尺寸線這些間距>7毫米最好不超過(guò)10毫米。尺寸界線超出箭頭約2毫米尺寸界線8989891610中心線斷開(kāi)30°1616161616161616⑵線性尺寸數(shù)字的方向,一般應(yīng)按上圖所示方向注寫(xiě),并盡可能避免在圖示30°范圍

內(nèi)標(biāo)注尺寸,無(wú)法避免時(shí)應(yīng)引出標(biāo)注。⑶尺寸數(shù)字不可被任

何圖線所通過(guò),否則必須將該圖線斷開(kāi)。四、角度、直徑、半徑及狹小部位尺寸的標(biāo)注。⒈角度尺寸⑴尺寸線應(yīng)畫(huà)成圓弧,其圓心是該角的頂點(diǎn)。尺寸界線沿徑向引出。⑵角度數(shù)字一律水平寫(xiě)。5°90°60°25°S10101010555⒉直徑尺寸⑴標(biāo)注直徑尺寸時(shí),應(yīng)在尺寸數(shù)字前加注符號(hào)

。⑵標(biāo)注球面直徑時(shí),應(yīng)在符號(hào)

前加注符號(hào)

S

。20R10⒊半徑尺寸⑴標(biāo)注半徑尺寸時(shí),應(yīng)在尺寸數(shù)字前加注符號(hào)

R

。⑶標(biāo)注球面半徑時(shí),應(yīng)在符號(hào)

R

前加注

符號(hào)

S

。R9R7R6R5R3R6R10⑵應(yīng)標(biāo)注在是圓弧的視圖上?!立椽M小部位尺寸35532●●●●3355310.2組合體的尺寸標(biāo)注方法

將組合體分解為若干個(gè)基本體和簡(jiǎn)單體,在形體分析的基礎(chǔ)上標(biāo)注三類尺寸。⑴定形尺寸確定各基本體形狀和大小的尺寸。⑵定位尺寸確定各基本體之間相對(duì)位置的尺寸。

要標(biāo)注定位尺寸,必須先選定尺寸基準(zhǔn)。零件有長(zhǎng)、寬、高三個(gè)方向的尺寸,每個(gè)方向至少要有一個(gè)基準(zhǔn)。一、基本方法形體分析法⑶總體尺寸零件長(zhǎng)、寬、高三個(gè)方向的最大尺寸。

總體尺寸、定位尺寸、定形尺寸可能重合,這時(shí)需作調(diào)整,以免出現(xiàn)多余尺寸。

通常以零件的底面、端面、對(duì)稱面和軸線作為基準(zhǔn)。二、一些常見(jiàn)形體的定形尺寸30102030

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論