世界銀行-按性別劃分的交通成本和女性的時間使用:來自印度Pink Slip計劃的證據(英)_第1頁
世界銀行-按性別劃分的交通成本和女性的時間使用:來自印度Pink Slip計劃的證據(英)_第2頁
世界銀行-按性別劃分的交通成本和女性的時間使用:來自印度Pink Slip計劃的證據(英)_第3頁
世界銀行-按性別劃分的交通成本和女性的時間使用:來自印度Pink Slip計劃的證據(英)_第4頁
世界銀行-按性別劃分的交通成本和女性的時間使用:來自印度Pink Slip計劃的證據(英)_第5頁
已閱讀5頁,還剩100頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

PublicDisclosureAuthorizedPublicDisclosureAuthorized

PolicyResearchWorkingPaper10701

Gender-SpecificTransportationCostsandFemaleTimeUse

EvidencefromIndia’sPinkSlipProgram

YutongChen

KeremCosar

DevakiGhose

ShirishMahendru

SheetalSekhri

WORLDBANKGROUP

DevelopmentEconomics

DevelopmentResearchGroup

February2024

PolicyResearchWorkingPaper10701

Abstract

Thispaperestimatesasyntheticdifference-in-differencesspecificationontheroll-outofaprogramprovidingfreebustransitforwomeninseveralIndianstates,toexaminetheimpactonwomen’stimeallocationandlaborsupply.Householdexpendituresonbusesfallandwomensavetimeontravel.However,thereissubstantialheterogeneity.Skilledemployedwomenincreaselaborsupplyandreduce

timeonhouseholdchores.Low-skilledmarriedwomenincreasetimeonhouseholdactivitiesandreducelaborsupply.Unemployedwomenincreasejobsearchwithnoeffectonemployment.Thefindingsshowthatgenderroleswithinhouseholdsunderminetheeffectofgender-specifictravelsubsidiesonfemalelaborsupply.

ThispaperisaproductoftheDevelopmentResearchGroup,DevelopmentEconomics.ItispartofalargereffortbytheWorldBanktoprovideopenaccesstoitsresearchandmakeacontributiontodevelopmentpolicydiscussionsaroundtheworld.PolicyResearchWorkingPapersarealsopostedontheWebat

/prwp.Theauthorsmay

becontactedatdghose@.

ThePolicyResearchWorkingPaperSeriesdisseminatesthefindingsofworkinprogresstoencouragetheexchangeofideasaboutdevelopmentissues.Anobjectiveoftheseriesistogetthefindingsoutquickly,evenifthepresentationsarelessthanfullypolished.Thepaperscarrythenamesoftheauthorsandshouldbecitedaccordingly.Thefindings,interpretations,andconclusionsexpressedinthispaperareentirelythoseoftheauthors.TheydonotnecessarilyrepresenttheviewsoftheInternationalBankforReconstructionandDevelopment/WorldBankanditsaffiliatedorganizations,orthoseoftheExecutiveDirectorsoftheWorldBankorthegovernmentstheyrepresent.

ProducedbytheResearchSupportTeam

GENDER-SPECIFICTRANSPORTATIONCOSTSANDFEMALE

TIMEUSE:EVIDENCEFROMINDIA’SPINKSLIPPROGRAM*

YutongChen?KeremCo?sar?DevakiGhose§ShirishMahendru?SheetalSekhri‖

Keywords:Transport,Gender,Time-Use,FemaleLaborForceParticipation

JELcodes:J16,J22,R41

*WethanktheUVAdepartmentofeconomicsforfinancialsupport.Forhelpfulcommentsandfeedback,wethankSAnukritiandtheOfficeoftheChiefEconomist,SouthAsiaRegion.

?yc3jk@(UniversityofVirginia)

?kerem.cosar@(UniversityofVirginia,CEPR,CESifo,NBER)

§dghose@(DevelopmentEconomicsResearchGroup,TheWorldBank).TheviewsexpressedinthispaperdonotrepresenttheviewsoftheWorldBankoritspartnerorganizationsandsolelyrepresenttheauthors’personalviews.

?shirish.mahendru@giz.de(GesellschaftfürInternationaleZusammenarbeit(GIZ)India)

‖ssekhri@(UniversityofVirginia)

1

1Introduction

Womenfacesignificantcommutingbarriersnotonlyindevelopingcountriesbutalsointhedevelopedworld.Socialnormsonhouseholdchoresandtravelingaloneaffectfemalelaborsupplythroughcommutingdecisions(

FanningMadden,

1981;

TurnerandNiemeier,

1997;

LeeandMcDonald,

2003;

Abe,

2011;

McQuaidandChen,

2012).

Arecent

OECD

(2016)

reportfindsthatmeninOECDcountrieshaveanaveragecommutingtimeof33.4minutesperday,whilewomenhaveanaverageof21.9minutes,resultinginagendercommutinggapof31.1%.Thepatternsareevenstarkerindevelopingcountries.Forexample,accordingtodatafromtheNationalTime-useSurvey(2020),onaverage,Indianwomenspendonly8minutesperdayonemployment-relatedtravel,whilemenspend36minutes.

ILO

(2017)

reportsthatlackoftransportationdecreaseswomen’sprobabilityofparticipatinginthelabormarketby16.5percentagepointsamongdevelopingcountries.Inshort,thereisampleevidencethatcommutingbarriersdistortwomen’slaborsupply.Thisnaturallybegetsthe

questionofwhetherreducingcommutingbarrierscanincreasewomen’slaborsupply.

Inthispaper,wefirstexamineifwomenareresponsivetothecostoftransportationindeterminingtheirtraveldemand,orwhethergendernormsaresoentrenchedthatdemandisinelastic.Second,ifwomentravelmorefrequentlyoroptforfastermodesoftransportationduetodecreasedcommutingcosts,howdoesthisaffecttheallocationofwomen’stimeamonghouseholdchores,commuting,andlaborsupply?Tothisend,weexploittherolloutofafreebusingscheme,thePinkSlipProgram,intwostatesofIndia.Indiaisapertinentsettingtostudythisquestion.Thereisanoverwhelminggendergapincommutingtimeandmodesused.The2011CensusofIndiarevealsthat30.2%ofwomentraveltoworkonfoot,andonly24.6%useanykindoftransportation,highlightingthelimitedaccesstotransportationoptionsformanywomen.1Thereisalsoevidencethatwomenuseslower

modesoftransportationtocommutetoworkasfastermodesareusuallymoreexpensive

1Incontrast,only20%ofmentravelonfootandmorethan50%ofmenuseanykindoftransportation.

2

(AnandandTiwari,

2006

).Concurrently,femalelaborforceparticipationislowinIndiawithalaborforceparticipationrateof24%in2019,significantlylowerthantheaverageof

46%inlow-andmiddle-incomecountries(

WorldBank,2019

).2

WeleveragethePinkSlipprograms’state-wideroll-outinPunjab,andTamilNaduinAprilandMay2021,respectively.WhileDelhialsointroducedthisprograminNovember2019,datalimitationsprecludeusfromincludingitinoursample.3Reportsfromthegroundindicatethatwomen’sresponsetotheinitiativewasoverwhelminglypositive.Forexample,fromJuly2021toMarch2022,thepercentageofwomentravellingbybusinTamilNadu

increasedfrom40%to61%(Sundaram,

2022).Accordingto

Goswami

(2021),womenmade

upthemajorityofridersonDelhiTransportCorporationbusesbyMarch2021.

Toidentifythecausalimpactoftheprogramonwomen’slaboroutcomes,wecollateddatafromanumberofsources.OurmainempiricalanalysisisbasedontheConsumerPyramidsHouseholdSurvey(CPHS)datamaintainedbytheCentreforMonitoringtheIndianEcon-omy(CMIE).TherichCPHSdataisapanelofabout160,000householdsacrossallIndianmajorstatesafter2014.Itincludescomprehensiveinformationnotonlyonhouseholdex-pendituresandmembers’demographiccharacteristicsandemploymentstatusbutalsoontheirtimeusepatternsandallocationoftimeonvariousactivities.Webolsterthefindings

withalargeprimarysurveyofwomenconductedinDelhi.

Ouridentificationapproachcompareswomenintreatedstates(i.e.,PunjabandTamilNadu)tothoseintheirgeographicalneighborswhichwewillrefertoascontrolstateshenceforth.Theimplementationofthepolicyin2021providestemporalvariation.Toaddressconcernsaboutendogeneity,weimplementasyntheticdifferences-in-differencesstrategy(SDID)pro-

posedby

Arkhangelskyetal.

(2021)atthestatelevel.Thisapproachcombinesthesynthetic

2Thefemalelaborforceparticipationratehasincreasedto37%accordingtothemostrecentfemalelaborforcesurveybytheMinistryofStatisticsandProgramImplementation(Source:

/mu2vx7m3)

3TheCMIE,ourdatasourceinthispaper,startedtocollectinformationonindividualtimeusageafterDelhistartedtoimplementthePinkSlipscheme.So,weareunabletoincludeDelhiinoursampledirectly.

3

controlmethod(

AbadieandGardeazabal,

2003

)withthedifference-in-differencesstrategytotakeadvantageofthebenefitsofboth.Eventstudymodelsrevealparallelpre-trends.TheweightsfromtheSDIDapproachareusedinallsurveydata-basedanalysesattheindi-viduallevel.WefindevidenceconsistentwithelasticdemandfortransportationforwomenusingtheCPHSdata.Overallexpendituresontravel,specificallyonpublicbuses,trams,andferries,werereducedforhouseholdswithwomenintreatedstatescomparedtocontrolstates.FindingsfromtheDelhisurveyalsocorroboratetheseresultsattheindividuallevel.Newfemaleusersofbusesreportnegligibletransportationcostsafterthepolicychangeas

opposedtosubstantialtransportcostspriortoitusingothermodes.

Wefindheterogeneouseffectsofthepolicychangeonemployedandunemployedwomenwhichareinoppositedirections.Consequently,thesecanceleachotherandthepolicyap-pearstohaveanulloveralleffect.4Wefocusontimespentonhouseholdchores,traveling,andlaborsupply.Skilledemployedwomenusethetimesavedfromcommutingtoincreasehoursoflaborsuppliedplausiblyduetothesubstitutionfromslowermodesoftransporta-tiontofasterfreebuses.Aninterestingfindingofouranalysisisthatprovidingfreebusestowomenhasthemostconsiderableeffectonthetime-usepatternsofunemployedwomen,especiallythosewhoarenotmarried.Thesewomenspendmoretimeoutsidethehouse,andmoretimetraveling,partiallyspendingthistimesearchingforjobsmoreintensivelyandfartherawayfromhome.However,wedonotfindanincreaseinthelikelihoodofthemfind-ingemploymentuptofourmonthsafterthescheme,indicatingthatwomenfaceadditional

hurdlestofindingemploymentintheshortrun.

Insharpcontrasttoskilledemployedwomen,low-skilledemployed,especiallymarriedwomen,spendthetimesavedfromcommutingtosubstituteforhouseholdchores.Infact,married

womenwithlowskillsreducedtheirhoursoflaborsupplied.Thisreductionisconsistent

4Weshowevidencethattheprogramdoesnotleadtochangesintheemploymentormaritalstatusofwomen,asaresultofwhichtheemploymentandmaritalstatusarepre-determinedrelativetothepolicychange.Thus,heterogeneityalongthesemarginsisnotconfoundedbychangesinthemarginsthemselves.

4

withourfindingsofintrahouseholdsubstitutionintimeuseanditsallocationtoactivities.Whilelow-skilledemployedmarriedwomenincreasedthetimespentonhouseholdchoresandreducedtheirlaborsupply,marriedmen’sbehaviorchangedintheoppositedirection:employedmarriedmenreducedtheirtimespentonhouseholdchoresandincreasedtheirworkhours.Unemployedmarriedmenincreasedthetimespentsearchingforjobs.Thisreducedlaborsupplyfromlow-skilledmarriedwomencouldbedrivenbyashiftfrommentowomenofhouseholdchoresthatrequireanindivisible,discreteamountoftime.Forexam-ple,alongcommutebymothersmayhavepreviouslymadeitoptimalforthefathertotaketheirkidstoschool,perhapsonabus.Aftertheroll-outoffreebusridesforwomen,thisresponsibilitycouldbereallocatedtothemotherwhocouldavailofapotentiallyfastermodeoftransport(bus)forfree,allowingthehusband’sworkhourstoincreaseattheexpenseofthemother’stime.Thegenderwagegapincreasesthelikelihoodofsuchre-optimizationatthehouseholdlevel.Insum,whilethefreebusprovisionbenefitedskilledandunmarriedwomenbyimprovingtheirlabormarketoutcomes,low-skilledmarriedwomenrespondedby

reducingtheirworkhoursanddoingmorehouseholdchores.

Ourpapercomplementsagrowingbodyofworkstudyingtheeffectsofbarrierstowomen’smobilityandaccesstopublictransportsystemsonfemalelaborforceparticipation(

Field

andVyborny,

2022;

Martinezetal.,

2020;

Alametal.,

2021;

Leietal.,

2019;

ILO,

2017;

PetrongoloandRonchi,

2020).

Farréetal.

(2022)showthata10-minuteincreaseincom

-mutingdecreasesthelikelihoodofmarriedwomenparticipatinginthelabormarketby4.6percentagepoints.Usingajobsearchmodelwherecommutematters,

LeBarbanchonet

al.

(2021)estimatedthatapproximately10%ofthewagegapbetweenmenandwomenin

re-employmentinFrancecouldbeattributedtodifferencesinthewillingnesstocommutebetweengenders.

Blacketal.

(2014)showthatmetropolitanareas’commutingtimesare

oneexplanationforthelargevariationacrossUScitiesinmarriedwomen’slaborforcepar-

ticipation.Inacloselyrelatedpaper,

FieldandVyborny

(2022)showthatwomen-onlybuses

5

increasefemalejobsearchinPakistan.5Weextendthisliteraturebyhighlightingthatde-mandfortransportationiselasticforwomenbutthereisheterogeneitybyskillandmaritalstatus.Freebusesdoincentivizeskilled,unmarriedandemployedtoincreasetheirlaborsupply,andunemployedwomentosearchmoreintensivelyforjobs.Butintrahouseholdgendernormsseemtoprecludeunskilledemployedmarriedwomenfromdirectlyimprovinglabormarketoutcomes.Surprisingly,low-skilledmarriedwomenusethetimesavedfromcommutingusingfreebusestodomorehouseholdwork,replacingsomeofthehouseholdworkpreviouslydonebytheirspouses,whointurnincreasetheirworkhours.Thus,inthepresenceofrestrictivegendernorms,reducingcommutingcostsalonemaynotbeenoughfor

womentoincreaseworkhoursorincreaseparticipationinthelabormarkets.

Thesecondstrandofliteratureweconnecttoanalyzestheeffectsofreductionsincommutetimes,oftenbyprovidingtransitsubsidiesinrandomizedcontrolexperiments,onjobsearch

andemploymentcreation(Franklin,

2018;

Abebeetal.,

2016;

Phillips,

2014;

Moreno-Monroy

andPosada,

2018

).Thegeneralconsensusinthisliteratureisthatreductionsincommutingcostsincreasejobsearchintensityandemployment.Wedemonstratethatsocialnormsindevelopingcountriescanunderminetheeffectsofpoliciesthatreducecommutingcostsforwomen.Whileunmarriedskilledandunemployedwomenincreasejobsearchefforts,wedonotdetectanincreaseinemploymentpossiblyduetootherformsofdiscriminationanddisparities,consistentwithrestrictivegendernormsdiscussedby

Jayachandran

(2021)and

DinkelmanandNgai

(2022).

Low-skillmarriedwomen’slaboroutcomesbecomeworseif

anything.

Ourfindingshaveimportantpolicyimplications:Ifthegoalofprovidingfreetransporta-

tiontowomenistoincreasewomen’slaborforceparticipation,onlyasmallshareofthe

5

DasguptaandDatta

(2023)useacross-sectionaltime-usesurveyandcomparemenandwomenacross

statestoassesshowPinkSlipschemeinDelhiaffectedwomen’stimeusepatterns.Theydocumentanincreaseof30to50minutesinthetimewomenspentonworkduringthefirsttwomonthsaftertheintroductionofthescheme.Wefindanullcausaleffectontimeuseinourpanelestimationmaskedbyheterogeneitybyemploymentstatus.

Borkeretal.

(2020)haveanongoingexperimentwheretheywanttocomparethepartial

equilibriumresultsoffreebuspassestothegeneralequilibriumeffectsofDelhi’spolicy.

6

workforce,primarilyskilledemployedwomen,benefitfromthisprogramintheimmediate

short-run.

Therestofthepaperisorganizedasfollows.Section

2

describesthestudysetting.Section

3

describesthedatasets.Section

4

outlinestheempiricalmethodologytoestimatetheim-pactsofreductionsincommutingcosts.Section

5

presentstheresults.Section

6

provides

concludingremarks.

2Background

InIndia,limitedinfrastructureandtransportservicesrestrictmobilityforbothmenandwomen,butwomenfrequentlyexperienceextrasocio-culturalandeconomicfactorsthatnegativelyaffecttheircommutepatterns(

SrinivasanandRogers,

2005;

Tripathietal.,

2017;

Alametal.,

2021).Giventhesizeablegenderwagegap(

DuraisamyandDuraisamy,

2016;

Deshpandeetal.,

2018)andtheadditionalbarriersinaccessingthefinancialsystemcom

-paredtomen(

Khera,

2018

),paidaccesstotransportationisplausiblyharderforIndianwomen.Besides,thelowrateoffemaleusageofpublictransportmightraiseaperceptionproblemsincemorefemalepresenceinpublictransportationmakeswomenfeelsafer(

Saj-

jadetal.,

2017).

Inasurveyof3,800studentsatDelhiUniversity,

Borker

(2021)found

thatwomenarewillingtotravel27minutesmoreperdayor40%morethantheirdailytraveltimeiftheycanuseaperceivedsafertransportroute.Thesefactorsputwomenatadisadvantageregardingaccesstotransportservicesandinfrastructure(

Astropetal.,

1996;

DominguezGonzalezetal.,

2020),potentiallyaffectingtheirparticipationinlabormarkets

(PatacchiniandZenou,

2005;

ILO,

2017;

Sajjadetal.,

2017;

Martinezetal.,

2020).

Inlightofthesechallenges,theDelhigovernmentintroducedaschemeofferingfreebusridestoallwomeninthecityfromNovember2019onward(

Kejriwal,

2019).Theschememakes

bustravelfreeforwomeninallDelhiTransportCorporation(DTC)andClusterbuses.On

eachride,busoperatorsprovideapinktickettoeachwoman.Afterward,Delhi’sgovernment

7

compensatesthebusoperatorswith|10—equivalentof$0.14,allcurrencyconversionsusethe11/2019exchangerate—perpinkticketride(

TheEconomicTimes,

2019;

Durai,

2021

).Theprogramshowedanearlyresponse:just20daysafterthescheme’slaunch,femaledaily

ridershipinDTCandclusterbusesincreasedfrom33%to44%(

Sengar,

2019).

SpurredbythegoodreceptionoftheinitiativeinDelhi,onApril1andMay7,2021,thestatesofPunjabandTamilNadu,respectively,implementedfreebusrideschemesforwomenintheirstates,allowingfreetravelingovernment-ownedpublicbuses.6FromJuly2021toMarch2022,thepercentageofwomencommutingbybusinTamilNaduincreasedfrom40%

to61%(Sundaram,

2022).ThisincrementledtheGovernmenttoincreasethebudgetofthe

programfrom|12million($168mn),allocatedinthefirstyear,to|15.2million($212.8mn)

inthesecondyear(

Durai,

2021;

Sundaram,

2022

).

3Data

3.1MainData:ConsumerPyramidsHouseholdSurvey

OurmainsourceofdataistheConsumerPyramidsHouseholdSurvey(CPHS).Itisahousehold-levellongitudinalsurveyconductedbytheCentreforMonitoringIndianEcon-omy(CMIE).StartingwiththefirstwaveinJanuary-April2014,theCMIErunssurveysthreeroundsayear(January-April,May-August,andSeptember-December).Eachwavecoversabout160,000householdsfromallmajorIndianstates,maintainingaconsistentlyhighhouseholdresponserateofover80%.Amulti-stagestratifiedsurveydesignisde-ployed.Thebroadestlevelofstratificationisahomogeneousregion(HR),whichisdefinedasasetofneighboringdistrictswithinastatethatiscomparableinthefollowingcharac-

teristics:climate,urbanization,femaleliteracyrate,andpopulation.InAppendix

TableC1,

6InPunjab,theseincludePEPSURoadTransportCorporation(PRTC),PUNBUS,PunjabRoadwaysBuses,andCityBusServices,butdidnotincludeACbuses,VolvoBuses,andHVACBuses(

Express,

2021)InTamil

Nadu,thefreerideschemeincludesticketsfortheTamilNaduStateTransportCorporation(TNSTC)ordinarycitybuses.

8

welistthetwotreatedstatesofPunjabandTamilNadu—whichimplementedfreebusrideschemesforwomen—andtheircontrolstates,i.e.,thestatesthatareadjacenttothetreatedstatesanddidnotdistributefreebusticketstowomen.7SincetheCPHSdataisrepresen-tativeatthelevelofHRs,ouranalysisonlyincludesneighboringHRsinthecontrolstates,i.e.,weexcludeHRsincontrolstatesthatarenotadjacenttotreatmentstates.Appendix??displaysthemapoftreatedandcontrolHRs.Intotal,wehave20HRsintwotreatmentand

sevencontrolstates.

TheCPHShasfoursections:ConsumptionPyramids(CP),PeopleofIndia(PoI),AspirationIndia(AsI),andIncomePyramids(InP).Inthisstudy,weuseCP,InP,andPoIdata.TheCPisahousehold-levelmonthlysurveyreportinghouseholdexpendituresonvariouskindsofgoodsandservices,withoutabreakdownofindividualmembersofmulti-personhouseholds.Specifically,itaskshouseholdsabouttheirmonthlyexpenditureonallkindsoftransportincludingexpensesonacombinedcategoryof“buses,trains,andferries”(BTF).OurstudyperiodfortheCPisfromNovember2020toSeptember2021.TheInPisamonthlysurveythattrackstheincomeofeachhouseholdmember.WeusethesamestudyperiodasintheCPdata.ThePoIisanindividual-levelsurveyconductedeveryfourmonths.Therearethreewavesinayear:January-April,May-August,andSeptember-December.ThePoIdatahasinformationonone’semploymentstatus,timeusage,anddemographiccharacteristicslikegender,educationlevel,andmaritalstatus.FromthePoIdata,weknowhowmuchtimeapersonspendsonhouseholdactivities,atwork,andtraveling.Reportedtimeontravelisthetimespentbyapersontravelingfromoneplacetoanotherforallkindsofpurposesincludingwork-relatedactivities.TheCPsurveydoesnotaskspecificquestionsabouttime

spentcommutingtowork,searchingforajob,oronleisure.

WeusesixwavesofPoIfromMay-August2020toJanuary-April2022(orfromthe20th

7TheCMIEstartedtocollecthouseholdmembers’timeusageinformationinthewaveofSeptember-December2019,whilethegovernmentofDelhistartedthepinkslipschemeinNovember2019.WedonotincludeDelhiintheanalysissincewedonothavepre-periodinformationontimeusagethere.

9

wavetothe25thwave).WealsomatchthehouseholdsthatappearedinthePoIdatatohouseholdsintheCPdata.Appendix

TableC2

liststhestudyperiodsforthetwosectionaldatasets.Werestrictoursampletowomen(orhouseholdshavingwomen)agedbetween15and65attheirfirstappearanceinthedata.Appendix

TableC3

liststhevariablesusedintheanalysisandtheirdefinitions.Appendix

TableC4

displaysthesummarystatisticsofourstudysample.PanelAdisplaysthehouseholdcharacteristicsinDecember2020.Differencesbetweenhouseholdsintreatedvs.controlHRsintermsofruralresidence,numberofpeople,andper-capitaincomeandexpendituresarerelativelysmall.InpanelB,wecomparewomenintreatedHRstothoseincontrolHRsinMay-August2020.Thedistributionsofage,maritalstatus,andeducationarecomparableforthetwogroupsofwomen.Womenintreatedareasarelesslikelytoparticipateinthelabormarketbutconditionalonparticipation,theyaremorelikelytobeemployed.Theyalsotendtospendmoretimeonhouseholdactivitiesand

workbutlesstimeontravelthanwomenincontrolareas.

3.2DelhiPrimarySurvey

TheCMIEstartedtocollecthouseholdmembers’timeusageinformationinthewaveofSeptember-December2019,whilethegovernmentofDelhistartedthePinkSlipschemeinNovember2019.Sincewedonothavepre-periodinformationontimeusageinDelhi,wedonotincludeitintheanalysis.Tocomplementandbolsterourbaselineanalysis,however,weuseprimarydatacollectedviaasurveyinDelhiinFebruary2020bytheGesellschaft

fürInternationaleZusammenarbeit(GIZ)India(Mahendru,

2022).

Thesurveycollecteddatafrom1,525femalebususers(1,294continuoususersand231newusers)and500nonusers.8Thesampleisrandomlyselectedatmajorattractionsandgenerationpoints

acrossDelhi(Appendix

FigureB1

).9Toconstructacomparablesampleofnonusers,new

8ContinuoususerswerewomenwhotookbusesbothbeforeandaftertheimplementationofthePinkSlipProgram.Newuserswerewomenwhobeganusingbusesaftertheprogram’simplementation.Nonuserswerewomenwhodidnotusebusesbeforeoraftertheprogram.

9Thegenerationpointsareallmajorlocationswithinthecitywheretripseitheroriginateorareattractedto.Theseincludemajorworkareas,shoppingdistricts,majorschools,andothers.

10

users,andcontinuoususers,weemploypropensityscorematching.Wematchwomenonthefollowingvariables:age,occupation,10totalaveragemonthlyhouseholdincome,totalaveragemonthlyhouseholdexpenditureontravel,ownershipofprivatevehicles,andknowl-edgeofhowtodrive.OurstudysampleoftheDelhiprimarysurveyisthematchedsample(n=1,290)consistingof184neverusers,182newusers,and924alwaysusers.ComparedtothetreatedsampleintheCPHSdata,thematchedsampleischaracterizedbyhigherlevelsofeducationandannualhouseholdincome.Specifically,approximately68%ofthebususersinthematchedsampleholdagraduatedegree,and85%ofthemreportanannualhousehold

incomeofover|240,000.

Wecompareperceptionsofbusesbetweennonusersandusers(panelAof

Table1

),aswellasbetweennewusersandcontinuoususers(panelBof

Table1

)inthepost-schemeperiod.Wespecificallyexaminetheirdifferencesintheperceptionsoffiveaspects:1)affordability

andavailabilityofbustransit;2)safetyregardingaccidents,crashes,threats,andthefts;

3)connectivity;4)busfrequency,waitingtime,travelduration,andunnecessarystops;5)accessibilitytobusstops.InpanelA,wecanseethatnonusersconsistentlygivelowerrat-ingsacrossallfiveperspectives;thatis,theyfindbustravellesssatisfactoryacrossallfivedimensionscomparedtousers.Theyareparticularlyconcernedaboutsafetyissues.Theaverageratingconcerningsafetyamongneverusersis1.63,indicatingalevelofsatisfac-tionthatfallsbetweenhighlyunsatisfactoryandunsatisfactory.InpanelB,wefindthatcomparedtocontinuoususers,newuserstendtogivealowerratingonsafetybutahigherratingregardingtheaffordabilityandavailabilityoffreecommutes.Theseresultssuggestthatwhenitcomestotransportation,womenprioritizenotonlysafetyconcernsbutalsoaffordability.Reducingcostsinpublictransportationhasthepotentialtoencouragewomen

tochoosebusesasaviableoptionforjobsearchandcommuting.

10Theoccupationvariableconsistsofthefollowingcategories:service,business,informalworker,dailywager,homemaker,andstudent.

11

3.3AuxiliaryData

Sinceourstudyperiod

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論