上海市五校聯(lián)合教學(xué)調(diào)研2024年高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第1頁
上海市五校聯(lián)合教學(xué)調(diào)研2024年高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第2頁
上海市五校聯(lián)合教學(xué)調(diào)研2024年高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第3頁
上海市五校聯(lián)合教學(xué)調(diào)研2024年高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第4頁
上海市五校聯(lián)合教學(xué)調(diào)研2024年高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

上海市五校聯(lián)合教學(xué)調(diào)研2024年高三適應(yīng)性調(diào)研考試數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標(biāo)號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù),則()A.函數(shù)在上單調(diào)遞增 B.函數(shù)在上單調(diào)遞減C.函數(shù)圖像關(guān)于對稱 D.函數(shù)圖像關(guān)于對稱2.已知各項(xiàng)都為正的等差數(shù)列中,,若,,成等比數(shù)列,則()A. B. C. D.3.已知復(fù)數(shù)z=(1+2i)(1+ai)(a∈R),若z∈R,則實(shí)數(shù)a=()A. B. C.2 D.﹣24.復(fù)數(shù),若復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)關(guān)于虛軸對稱,則等于()A. B. C. D.5.第七屆世界軍人運(yùn)動會于2019年10月18日至27日在中國武漢舉行,中國隊以133金64銀42銅位居金牌榜和獎牌榜的首位.運(yùn)動會期間有甲、乙等五名志愿者被分配到射擊、田徑、籃球、游泳四個運(yùn)動場地提供服務(wù),要求每個人都要被派出去提供服務(wù),且每個場地都要有志愿者服務(wù),則甲和乙恰好在同一組的概率是()A. B. C. D.6.在中,角所對的邊分別為,已知,.當(dāng)變化時,若存在最大值,則正數(shù)的取值范圍為A. B. C. D.7.已知,,,,.若實(shí)數(shù),滿足不等式組,則目標(biāo)函數(shù)()A.有最大值,無最小值 B.有最大值,有最小值C.無最大值,有最小值 D.無最大值,無最小值8.如圖,平面四邊形中,,,,,現(xiàn)將沿翻折,使點(diǎn)移動至點(diǎn),且,則三棱錐的外接球的表面積為()A. B. C. D.9.已知,則p是q的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件10.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對應(yīng)的點(diǎn)為,則()A. B. C. D.11.下列函數(shù)中,值域?yàn)镽且為奇函數(shù)的是()A. B. C. D.12.函數(shù)的最小正周期是,則其圖象向左平移個單位長度后得到的函數(shù)的一條對稱軸是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)在的零點(diǎn)個數(shù)為________.14.如圖是一個算法偽代碼,則輸出的的值為_______________.15.已知函數(shù)圖象上一點(diǎn)處的切線方程為,則_______.16.中,角的對邊分別為,且成等差數(shù)列,若,,則的面積為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱錐中,,,,,.(1)求證:;(2)求直線與平面所成角的正弦值.18.(12分)在開展學(xué)習(xí)強(qiáng)國的活動中,某校高三數(shù)學(xué)教師成立了黨員和非黨員兩個學(xué)習(xí)組,其中黨員學(xué)習(xí)組有4名男教師、1名女教師,非黨員學(xué)習(xí)組有2名男教師、2名女教師,高三數(shù)學(xué)組計劃從兩個學(xué)習(xí)組中隨機(jī)各選2名教師參加學(xué)校的挑戰(zhàn)答題比賽.(1)求選出的4名選手中恰好有一名女教師的選派方法數(shù);(2)記X為選出的4名選手中女教師的人數(shù),求X的概率分布和數(shù)學(xué)期望.19.(12分)表示,中的最大值,如,己知函數(shù),.(1)設(shè),求函數(shù)在上的零點(diǎn)個數(shù);(2)試探討是否存在實(shí)數(shù),使得對恒成立?若存在,求的取值范圍;若不存在,說明理由.20.(12分)選修4-4:坐標(biāo)系與參數(shù)方程已知曲線的參數(shù)方程是(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程是.(1)寫出的極坐標(biāo)方程和的直角坐標(biāo)方程;(2)已知點(diǎn)、的極坐標(biāo)分別為和,直線與曲線相交于,兩點(diǎn),射線與曲線相交于點(diǎn),射線與曲線相交于點(diǎn),求的值.21.(12分)已知函數(shù).(1)若是的極值點(diǎn),求的極大值;(2)求實(shí)數(shù)的范圍,使得恒成立.22.(10分)某校為了解校園安全教育系列活動的成效,對全校學(xué)生進(jìn)行了一次安全意識測試,根據(jù)測試成績評定“合格”“不合格”兩個等級,同時對相應(yīng)等級進(jìn)行量化:“合格”記5分,“不合格”記0分.現(xiàn)隨機(jī)抽取部分學(xué)生的答卷,統(tǒng)計結(jié)果及對應(yīng)的頻率分布直方圖如下:等級不合格合格得分頻數(shù)624(1)由該題中頻率分布直方圖求測試成績的平均數(shù)和中位數(shù);(2)其他條件不變,在評定等級為“合格”的學(xué)生中依次抽取2人進(jìn)行座談,每次抽取1人,求在第1次抽取的測試得分低于80分的前提下,第2次抽取的測試得分仍低于80分的概率;(3)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學(xué)生中抽取10人進(jìn)行座談.現(xiàn)再從這10人中任選4人,記所選4人的量化總分為,求的數(shù)學(xué)期望.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、C【解析】

依題意可得,即函數(shù)圖像關(guān)于對稱,再求出函數(shù)的導(dǎo)函數(shù),即可判斷函數(shù)的單調(diào)性;【詳解】解:由,,所以函數(shù)圖像關(guān)于對稱,又,在上不單調(diào).故正確的只有C,故選:C【點(diǎn)睛】本題考查函數(shù)的對稱性的判定,利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性,屬于基礎(chǔ)題.2、A【解析】試題分析:設(shè)公差為或(舍),故選A.考點(diǎn):等差數(shù)列及其性質(zhì).3、D【解析】

化簡z=(1+2i)(1+ai)=,再根據(jù)z∈R求解.【詳解】因?yàn)閦=(1+2i)(1+ai)=,又因?yàn)閦∈R,所以,解得a=-2.故選:D【點(diǎn)睛】本題主要考查復(fù)數(shù)的運(yùn)算及概念,還考查了運(yùn)算求解的能力,屬于基礎(chǔ)題.4、A【解析】

先通過復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)關(guān)于虛軸對稱,得到,再利用復(fù)數(shù)的除法求解.【詳解】因?yàn)閺?fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)關(guān)于虛軸對稱,且復(fù)數(shù),所以所以故選:A【點(diǎn)睛】本題主要考查復(fù)數(shù)的基本運(yùn)算和幾何意義,屬于基礎(chǔ)題.5、A【解析】

根據(jù)題意,五人分成四組,先求出兩人組成一組的所有可能的分組種數(shù),再將甲乙組成一組的情況,即可求出概率.【詳解】五人分成四組,先選出兩人組成一組,剩下的人各自成一組,所有可能的分組共有種,甲和乙分在同一組,則其余三人各自成一組,只有一種分法,與場地?zé)o關(guān),故甲和乙恰好在同一組的概率是.故選:A.【點(diǎn)睛】本題考查組合的應(yīng)用和概率的計算,屬于基礎(chǔ)題.6、C【解析】

因?yàn)?,,所以根?jù)正弦定理可得,所以,,所以,其中,,因?yàn)榇嬖谧畲笾?,所以由,可得,所以,所以,解得,所以正?shù)的取值范圍為,故選C.7、B【解析】

判斷直線與縱軸交點(diǎn)的位置,畫出可行解域,即可判斷出目標(biāo)函數(shù)的最值情況.【詳解】由,,所以可得.,所以由,因此該直線在縱軸的截距為正,但是斜率有兩種可能,因此可行解域如下圖所示:由此可以判斷該目標(biāo)函數(shù)一定有最大值和最小值.故選:B【點(diǎn)睛】本題考查了目標(biāo)函數(shù)最值是否存在問題,考查了數(shù)形結(jié)合思想,考查了不等式的性質(zhì)應(yīng)用.8、C【解析】

由題意可得面,可知,因?yàn)?,則面,于是.由此推出三棱錐外接球球心是的中點(diǎn),進(jìn)而算出,外接球半徑為1,得出結(jié)果.【詳解】解:由,翻折后得到,又,則面,可知.又因?yàn)?,則面,于是,因此三棱錐外接球球心是的中點(diǎn).計算可知,則外接球半徑為1,從而外接球表面積為.故選:C.【點(diǎn)睛】本題主要考查簡單的幾何體、球的表面積等基礎(chǔ)知識;考查空間想象能力、推理論證能力、運(yùn)算求解能力及創(chuàng)新意識,屬于中檔題.9、B【解析】

根據(jù)誘導(dǎo)公式化簡再分析即可.【詳解】因?yàn)?所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分條件.故選:B【點(diǎn)睛】本題考查充分與必要條件的判定以及誘導(dǎo)公式的運(yùn)用,屬于基礎(chǔ)題.10、B【解析】

設(shè),根據(jù)復(fù)數(shù)的幾何意義得到、的關(guān)系式,即可得解;【詳解】解:設(shè)∵,∴,解得.故選:B【點(diǎn)睛】本題考查復(fù)數(shù)的幾何意義的應(yīng)用,屬于基礎(chǔ)題.11、C【解析】

依次判斷函數(shù)的值域和奇偶性得到答案.【詳解】A.,值域?yàn)椋瞧娣桥己瘮?shù),排除;B.,值域?yàn)?,奇函?shù),排除;C.,值域?yàn)椋婧瘮?shù),滿足;D.,值域?yàn)?,非奇非偶函?shù),排除;故選:.【點(diǎn)睛】本題考查了函數(shù)的值域和奇偶性,意在考查學(xué)生對于函數(shù)知識的綜合應(yīng)用.12、D【解析】

由三角函數(shù)的周期可得,由函數(shù)圖像的變換可得,平移后得到函數(shù)解析式為,再求其對稱軸方程即可.【詳解】解:函數(shù)的最小正周期是,則函數(shù),經(jīng)過平移后得到函數(shù)解析式為,由,得,當(dāng)時,.故選D.【點(diǎn)睛】本題考查了正弦函數(shù)圖像的性質(zhì)及函數(shù)圖像的平移變換,屬基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

求出的范圍,再由函數(shù)值為零,得到的取值可得零點(diǎn)個數(shù).【詳解】詳解:由題可知,或解得,或故有3個零點(diǎn).【點(diǎn)睛】本題主要考查三角函數(shù)的性質(zhì)和函數(shù)的零點(diǎn),屬于基礎(chǔ)題.14、5【解析】

執(zhí)行循環(huán)結(jié)構(gòu)流程圖,即得結(jié)果.【詳解】執(zhí)行循環(huán)結(jié)構(gòu)流程圖得,結(jié)束循環(huán),輸出.【點(diǎn)睛】本題考查循環(huán)結(jié)構(gòu)流程圖,考查基本分析與運(yùn)算能力,屬基礎(chǔ)題.15、1【解析】

求出導(dǎo)函數(shù),由切線方程得切線斜率和切點(diǎn)坐標(biāo),從而可求得.【詳解】由題意,∵函數(shù)圖象在點(diǎn)處的切線方程為,∴,解得,∴.故答案為:1.【點(diǎn)睛】本題考查導(dǎo)數(shù)的幾何意義,求出導(dǎo)函數(shù)是解題基礎(chǔ),16、.【解析】

由A,B,C成等差數(shù)列得出B=60°,利用正弦定理得進(jìn)而得代入三角形的面積公式即可得出.【詳解】∵A,B,C成等差數(shù)列,∴A+C=2B,又A+B+C=180°,∴3B=180°,B=60°.故由正弦定理,故所以S△ABC,故答案為:【點(diǎn)睛】本題考查了等差數(shù)列的性質(zhì),三角形的面積公式,考查正弦定理的應(yīng)用,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見詳解;(2)【解析】

(1)取中點(diǎn),根據(jù),利用線面垂直的判定定理,可得平面,最后可得結(jié)果.(2)利用建系,假設(shè)長度,可得,以及平面的一個法向量,然后利用向量的夾角公式,可得結(jié)果.【詳解】(1)取中點(diǎn),連接,如圖由,所以由,平面所以平面,又平面所以(2)假設(shè),由,,.所以則,所以又,平面所以平面,所以,又,故建立空間直角坐標(biāo)系,如圖設(shè)平面的一個法向量為則令,所以則直線與平面所成角的正弦值為【點(diǎn)睛】本題考查線面垂直、線線垂直的應(yīng)用,還考查線面角,學(xué)會使用建系的方法來解決立體幾何問題,將幾何問題代數(shù)化,化繁為簡,屬中檔題.18、(1)28種;(2)分布見解析,.【解析】

(1)分這名女教師分別來自黨員學(xué)習(xí)組與非黨員學(xué)習(xí)組,可得恰好有一名女教師的選派方法數(shù);(2)X的可能取值為,再求出X的每個取值的概率,可得X的概率分布和數(shù)學(xué)期望.【詳解】解:(1)選出的4名選手中恰好有一名女生的選派方法數(shù)為種.(2)X的可能取值為0,1,2,3.,,,.故X的概率分布為:X0123P所以.【點(diǎn)睛】本題主要考查組合數(shù)與組合公式及離散型隨機(jī)變量的期望和方差,相對不難,注意運(yùn)算的準(zhǔn)確性.19、(1)個;(1)存在,.【解析】試題分析:(1)設(shè),對其求導(dǎo),及最小值,從而得到的解析式,進(jìn)一步求值域即可;(1)分別對和兩種情況進(jìn)行討論,得到的解析式,進(jìn)一步構(gòu)造,通過求導(dǎo)得到最值,得到滿足條件的的范圍.試題解析:(1)設(shè),.............1分令,得遞增;令,得遞減,.................1分∴,∴,即,∴.............3分設(shè),結(jié)合與在上圖象可知,這兩個函數(shù)的圖象在上有兩個交點(diǎn),即在上零點(diǎn)的個數(shù)為1...........................5分(或由方程在上有兩根可得)(1)假設(shè)存在實(shí)數(shù),使得對恒成立,則,對恒成立,即,對恒成立,................................6分①設(shè),令,得遞增;令,得遞減,∴,當(dāng)即時,,∴,∵,∴4.故當(dāng)時,對恒成立,.......................8分當(dāng)即時,在上遞減,∴.∵,∴,故當(dāng)時,對恒成立............................10分②若對恒成立,則,∴...........11分由①及②得,.故存在實(shí)數(shù),使得對恒成立,且的取值范圍為................................................11分考點(diǎn):導(dǎo)數(shù)應(yīng)用.【思路點(diǎn)睛】本題考查了函數(shù)恒成立問題;利用導(dǎo)數(shù)來判斷函數(shù)的單調(diào)性,進(jìn)一步求最值;屬于難題.本題考查函數(shù)導(dǎo)數(shù)與單調(diào)性.確定零點(diǎn)的個數(shù)問題:可利用數(shù)形結(jié)合的辦法判斷交點(diǎn)個數(shù),如果函數(shù)較為復(fù)雜,可結(jié)合導(dǎo)數(shù)知識確定極值點(diǎn)和單調(diào)區(qū)間從而確定其大致圖象.方程的有解問題就是判斷是否存在零點(diǎn)的問題,可參變分離,轉(zhuǎn)化為求函數(shù)的值域問題處理.恒成立問題以及可轉(zhuǎn)化為恒成立問題的問題,往往可利用參變分離的方法,轉(zhuǎn)化為求函數(shù)最值處理.也可構(gòu)造新函數(shù)然后利用導(dǎo)數(shù)來求解.注意利用數(shù)形結(jié)合的數(shù)學(xué)思想方法.20、(1)線的普通方程為,曲線的直角坐標(biāo)方程為;(2).【解析】試題分析:(1)(1)利用cos2θ+sin2θ=1,即可曲線C1的參數(shù)方程化為普通方程,進(jìn)而利用即可化為極坐標(biāo)方程,同理可得曲線C2的直角坐標(biāo)方程;

(2)由過的圓心,得得,設(shè),,代入中即可得解.試題解析:(1)曲線的普通方程為,化成極坐標(biāo)方程為曲線的直角坐標(biāo)方程為(2)在直角坐標(biāo)系下,,,恰好過的圓心,

∴由得,是橢圓上的兩點(diǎn),在極坐標(biāo)下,設(shè),分別代入中,有和∴,則,即21、(1).(2)【解析】

(1)先對函數(shù)求導(dǎo),結(jié)合極值存在的條件可求t,然后結(jié)合導(dǎo)數(shù)可研究函數(shù)的單調(diào)性,進(jìn)而可求極大值;(2)由已知代入可得,x2+(t﹣2)x﹣tlnx≥0在x>0時恒成立,構(gòu)造函數(shù)g(x)=x2+(t﹣2)x﹣tlnx,結(jié)合導(dǎo)數(shù)及函數(shù)的性質(zhì)可求.【詳解】(1),x>0,由題意可得,0,解可得t=﹣4,∴,易得,當(dāng)x>2,0<x<1時,f′(x)>0,函數(shù)單調(diào)遞增,當(dāng)1<x<2時,f′(x)<0,函數(shù)單調(diào)遞減,故當(dāng)x=1時,函數(shù)取得極大值f(1)=﹣3;(2)由f(x)=x2+(t﹣2)x﹣tlnx+2≥2在x>0時恒成立可得,x2+(t﹣2)x﹣tlnx≥0在x>0時恒成立,令g(x)=x2+(t﹣2)x﹣tlnx,則,(i)當(dāng)t≥0時,g(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,所以g(x)min=g(1)=t﹣1≥0,解可得t≥1,(ii)當(dāng)﹣2<t<0時,g(x)在()上單調(diào)遞減,在(0,),(1,+∞)上單調(diào)遞增,此時g(1)=t﹣1<﹣1不合題意,舍去;(iii)當(dāng)t=﹣2時,g′(x)0,即g(x)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論