云南省紅河縣一中2024年高三第六次模擬考試數(shù)學(xué)試卷含解析_第1頁
云南省紅河縣一中2024年高三第六次模擬考試數(shù)學(xué)試卷含解析_第2頁
云南省紅河縣一中2024年高三第六次模擬考試數(shù)學(xué)試卷含解析_第3頁
云南省紅河縣一中2024年高三第六次模擬考試數(shù)學(xué)試卷含解析_第4頁
云南省紅河縣一中2024年高三第六次模擬考試數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

云南省紅河縣一中2024年高三第六次模擬考試數(shù)學(xué)試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列,,,…,是首項為8,公比為得等比數(shù)列,則等于()A.64 B.32 C.2 D.42.已知α,β是兩平面,l,m,n是三條不同的直線,則不正確命題是()A.若m⊥α,n//α,則m⊥n B.若m//α,n//α,則m//nC.若l⊥α,l//β,則α⊥β D.若α//β,lβ,且l//α,則l//β3.已知數(shù)列是公比為的等比數(shù)列,且,若數(shù)列是遞增數(shù)列,則的取值范圍為()A. B. C. D.4.是拋物線上一點,是圓關(guān)于直線的對稱圓上的一點,則最小值是()A. B. C. D.5.已知,若對任意,關(guān)于x的不等式(e為自然對數(shù)的底數(shù))至少有2個正整數(shù)解,則實數(shù)a的取值范圍是()A. B. C. D.6.已知復(fù)數(shù)是純虛數(shù),其中是實數(shù),則等于()A. B. C. D.7.已知某批零件的長度誤差(單位:毫米)服從正態(tài)分布,從中隨機取一件,其長度誤差落在區(qū)間(3,6)內(nèi)的概率為()(附:若隨機變量ξ服從正態(tài)分布,則,.)A.4.56% B.13.59% C.27.18% D.31.74%8.《算數(shù)書》竹簡于上世紀八十年代在湖北省江陵縣張家山出土,這是我國現(xiàn)存最早的有系統(tǒng)的數(shù)學(xué)典籍.其中記載有求“囷蓋”的術(shù):“置如其周,令相承也.又以高乘之,三十六成一”.該術(shù)相當(dāng)于給出了由圓錐的底面周長與高,計算其體積的近似公式.它實際上是將圓錐體積公式中的圓周率近似取為3.那么近似公式相當(dāng)于將圓錐體積公式中的圓周率近似取為()A. B. C. D.9.已知復(fù)數(shù),其中為虛數(shù)單位,則()A. B. C.2 D.10.不等式組表示的平面區(qū)域為,則()A., B.,C., D.,11.的展開式中的項的系數(shù)為()A.120 B.80 C.60 D.4012.已知方程表示的曲線為的圖象,對于函數(shù)有如下結(jié)論:①在上單調(diào)遞減;②函數(shù)至少存在一個零點;③的最大值為;④若函數(shù)和圖象關(guān)于原點對稱,則由方程所確定;則正確命題序號為()A.①③ B.②③ C.①④ D.②④二、填空題:本題共4小題,每小題5分,共20分。13.已知實數(shù),對任意,有,且,則______.14.在平面直角坐標系中,雙曲線的一條準線與兩條漸近線所圍成的三角形的面積為______.15.已知是等比數(shù)列,若,,且∥,則______.16.若隨機變量的分布列如表所示,則______,______.-101三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)設(shè)數(shù)陣,其中、、、.設(shè),其中,且.定義變換為“對于數(shù)陣的每一行,若其中有或,則將這一行中每個數(shù)都乘以;若其中沒有且沒有,則這一行中所有數(shù)均保持不變”(、、、).表示“將經(jīng)過變換得到,再將經(jīng)過變換得到、,以此類推,最后將經(jīng)過變換得到”,記數(shù)陣中四個數(shù)的和為.(1)若,寫出經(jīng)過變換后得到的數(shù)陣;(2)若,,求的值;(3)對任意確定的一個數(shù)陣,證明:的所有可能取值的和不超過.18.(12分)已知在多面體中,平面平面,且四邊形為正方形,且//,,,點,分別是,的中點.(1)求證:平面;(2)求平面與平面所成的銳二面角的余弦值.19.(12分)等差數(shù)列中,.(1)求的通項公式;(2)設(shè),記為數(shù)列前項的和,若,求.20.(12分)在平面直角坐標系中,曲線的參數(shù)方程為:(為參數(shù)),以為極點,軸的正半軸為極軸建立極坐標系,曲線的極坐標方程為:.(1)求曲線的極坐標方程和曲線的直角坐標方程;(2)若直線與曲線交于,兩點,與曲線交于,兩點,求取得最大值時直線的直角坐標方程.21.(12分)已知圓:和拋物線:,為坐標原點.(1)已知直線和圓相切,與拋物線交于兩點,且滿足,求直線的方程;(2)過拋物線上一點作兩直線和圓相切,且分別交拋物線于兩點,若直線的斜率為,求點的坐標.22.(10分)已知數(shù)列,,數(shù)列滿足,n.(1)若,,求數(shù)列的前2n項和;(2)若數(shù)列為等差數(shù)列,且對任意n,恒成立.①當(dāng)數(shù)列為等差數(shù)列時,求證:數(shù)列,的公差相等;②數(shù)列能否為等比數(shù)列?若能,請寫出所有滿足條件的數(shù)列;若不能,請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

根據(jù)題意依次計算得到答案.【詳解】根據(jù)題意知:,,故,,.故選:.【點睛】本題考查了數(shù)列值的計算,意在考查學(xué)生的計算能力.2、B【解析】

根據(jù)線面平行、線面垂直和空間角的知識,判斷A選項的正確性.由線面平行有關(guān)知識判斷B選項的正確性.根據(jù)面面垂直的判定定理,判斷C選項的正確性.根據(jù)面面平行的性質(zhì)判斷D選項的正確性.【詳解】A.若,則在中存在一條直線,使得,則,又,那么,故正確;B.若,則或相交或異面,故不正確;C.若,則存在,使,又,則,故正確.D.若,且,則或,又由,故正確.故選:B【點睛】本小題主要考查空間線線、線面和面面有關(guān)命題真假性的判斷,屬于基礎(chǔ)題.3、D【解析】

先根據(jù)已知條件求解出的通項公式,然后根據(jù)的單調(diào)性以及得到滿足的不等關(guān)系,由此求解出的取值范圍.【詳解】由已知得,則.因為,數(shù)列是單調(diào)遞增數(shù)列,所以,則,化簡得,所以.故選:D.【點睛】本題考查數(shù)列通項公式求解以及根據(jù)數(shù)列單調(diào)性求解參數(shù)范圍,難度一般.已知數(shù)列單調(diào)性,可根據(jù)之間的大小關(guān)系分析問題.4、C【解析】

求出點關(guān)于直線的對稱點的坐標,進而可得出圓關(guān)于直線的對稱圓的方程,利用二次函數(shù)的基本性質(zhì)求出的最小值,由此可得出,即可得解.【詳解】如下圖所示:設(shè)點關(guān)于直線的對稱點為點,則,整理得,解得,即點,所以,圓關(guān)于直線的對稱圓的方程為,設(shè)點,則,當(dāng)時,取最小值,因此,.故選:C.【點睛】本題考查拋物線上一點到圓上一點最值的計算,同時也考查了兩圓關(guān)于直線對稱性的應(yīng)用,考查計算能力,屬于中等題.5、B【解析】

構(gòu)造函數(shù)(),求導(dǎo)可得在上單調(diào)遞增,則,問題轉(zhuǎn)化為,即至少有2個正整數(shù)解,構(gòu)造函數(shù),,通過導(dǎo)數(shù)研究單調(diào)性,由可知,要使得至少有2個正整數(shù)解,只需即可,代入可求得結(jié)果.【詳解】構(gòu)造函數(shù)(),則(),所以在上單調(diào)遞增,所以,故問題轉(zhuǎn)化為至少存在兩個正整數(shù)x,使得成立,設(shè),,則,當(dāng)時,單調(diào)遞增;當(dāng)時,單調(diào)遞增.,整理得.故選:B.【點睛】本題考查導(dǎo)數(shù)在判斷函數(shù)單調(diào)性中的應(yīng)用,考查不等式成立問題中求解參數(shù)問題,考查學(xué)生分析問題的能力和邏輯推理能力,難度較難.6、A【解析】

對復(fù)數(shù)進行化簡,由于為純虛數(shù),則化簡后的復(fù)數(shù)形式中,實部為0,得到的值,從而得到復(fù)數(shù).【詳解】因為為純虛數(shù),所以,得所以.故選A項【點睛】本題考查復(fù)數(shù)的四則運算,純虛數(shù)的概念,屬于簡單題.7、B【解析】試題分析:由題意故選B.考點:正態(tài)分布8、C【解析】

將圓錐的體積用兩種方式表達,即,解出即可.【詳解】設(shè)圓錐底面圓的半徑為r,則,又,故,所以,.故選:C.【點睛】本題利用古代數(shù)學(xué)問題考查圓錐體積計算的實際應(yīng)用,考查學(xué)生的運算求解能力、創(chuàng)新能力.9、D【解析】

把已知等式變形,然后利用數(shù)代數(shù)形式的乘除運算化簡,再由復(fù)數(shù)模的公式計算得答案.【詳解】解:,則.故選:D.【點睛】本題考查了復(fù)數(shù)代數(shù)形式的乘除運算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.10、D【解析】

根據(jù)題意,分析不等式組的幾何意義,可得其表示的平面區(qū)域,設(shè),分析的幾何意義,可得的最小值,據(jù)此分析選項即可得答案.【詳解】解:根據(jù)題意,不等式組其表示的平面區(qū)域如圖所示,其中,,

設(shè),則,的幾何意義為直線在軸上的截距的2倍,

由圖可得:當(dāng)過點時,直線在軸上的截距最大,即,當(dāng)過點原點時,直線在軸上的截距最小,即,故AB錯誤;

設(shè),則的幾何意義為點與點連線的斜率,由圖可得最大可到無窮大,最小可到無窮小,故C錯誤,D正確;故選:D.【點睛】本題考查本題考查二元一次不等式的性質(zhì)以及應(yīng)用,關(guān)鍵是對目標函數(shù)幾何意義的認識,屬于基礎(chǔ)題.11、A【解析】

化簡得到,再利用二項式定理展開得到答案.【詳解】展開式中的項為.故選:【點睛】本題考查了二項式定理,意在考查學(xué)生的計算能力.12、C【解析】

分四類情況進行討論,然后畫出相對應(yīng)的圖象,由圖象可以判斷所給命題的真假性.【詳解】(1)當(dāng)時,,此時不存在圖象;(2)當(dāng)時,,此時為實軸為軸的雙曲線一部分;(3)當(dāng)時,,此時為實軸為軸的雙曲線一部分;(4)當(dāng)時,,此時為圓心在原點,半徑為1的圓的一部分;畫出的圖象,由圖象可得:對于①,在上單調(diào)遞減,所以①正確;對于②,函數(shù)與的圖象沒有交點,即沒有零點,所以②錯誤;對于③,由函數(shù)圖象的對稱性可知③錯誤;對于④,函數(shù)和圖象關(guān)于原點對稱,則中用代替,用代替,可得,所以④正確.故選:C【點睛】本題主要考查了雙曲線的簡單幾何性質(zhì),函數(shù)的圖象與性質(zhì),函數(shù)的零點概念,考查了數(shù)形結(jié)合的數(shù)學(xué)思想.二、填空題:本題共4小題,每小題5分,共20分。13、-1【解析】

由二項式定理及展開式系數(shù)的求法得,又,所以,令得:,所以,得解.【詳解】由,且,則,又,所以,令得:,所以,故答案為:.【點睛】本題考查了二項式定理及展開式系數(shù)的求法,意在考查學(xué)生對這些知識的理解掌握水平.14、【解析】

求出雙曲線的漸近線方程,求出準線方程,求出三角形的頂點的坐標,然后求解面積.【詳解】解:雙曲線:雙曲線中,,,則雙曲線的一條準線方程為,雙曲線的漸近線方程為:,可得準線方程與雙曲線的兩條漸近線所圍成的三角形的頂點的坐標,,,,則三角形的面積為.故答案為:【點睛】本題考查雙曲線方程的應(yīng)用,雙曲線的簡單性質(zhì)的應(yīng)用,考查計算能力,屬于中檔題.15、【解析】若,,且∥,則,由是等比數(shù)列,可知公比為..故答案為.16、【解析】

首先求得a的值,然后利用均值的性質(zhì)計算均值,最后求得的值,由方差的性質(zhì)計算的值即可.【詳解】由題意可知,解得(舍去)或.則,則,由方差的計算性質(zhì)得.【點睛】本題主要考查分布列的性質(zhì),均值的計算公式,方差的計算公式,方差的性質(zhì)等知識,意在考查學(xué)生的轉(zhuǎn)化能力和計算求解能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2);(3)見解析.【解析】

(1)由,能求出經(jīng)過變換后得到的數(shù)陣;(2)由,,求出數(shù)陣經(jīng)過變化后的矩陣,進而可求得的值;(3)分和兩種情況討論,推導(dǎo)出變換后數(shù)陣的第一行和第二行的數(shù)字之和,由此能證明的所有可能取值的和不超過.【詳解】(1),經(jīng)過變換后得到的數(shù)陣;(2)經(jīng)變換后得,故;(3)若,在的所有非空子集中,含有且不含的子集共個,經(jīng)過變換后第一行均變?yōu)?、;含有且不含的子集共個,經(jīng)過變換后第一行均變?yōu)椤?;同時含有和的子集共個,經(jīng)過變換后第一行仍為、;不含也不含的子集共個,經(jīng)過變換后第一行仍為、.所以經(jīng)過變換后所有的第一行的所有數(shù)的和為.若,則的所有非空子集中,含有的子集共個,經(jīng)過變換后第一行均變?yōu)?、;不含有的子集共個,經(jīng)過變換后第一行仍為、.所以經(jīng)過變換后所有的第一行的所有數(shù)的和為.同理,經(jīng)過變換后所有的第二行的所有數(shù)的和為.所以的所有可能取值的和為,又因為、、、,所以的所有可能取值的和不超過.【點睛】本題考查數(shù)陣變換的求法,考查數(shù)陣中四個數(shù)的和不超過的證明,考查類比推理、數(shù)陣變換等基礎(chǔ)知識,考查運算求解能力,綜合性強,難度大.18、(1)證明見解析;(2).【解析】

(1)構(gòu)造直線所在平面,由面面平行推證線面平行;(2)以為坐標原點,建立空間直角坐標系,分別求出兩個平面的法向量,再由法向量之間的夾角,求得二面角的余弦值.【詳解】(1)過點交于點,連接,如下圖所示:因為平面平面,且交線為,又四邊形為正方形,故可得,故可得平面,又平面,故可得.在三角形中,因為為中點,,故可得//,為中點;又因為四邊形為等腰梯形,是的中點,故可得//;又,且平面,平面,故面面,又因為平面,故面.即證.(2)連接,,作交于點,由(1)可知平面,又因為//,故可得平面,則;又因為//,,故可得即,,兩兩垂直,則分別以,,為,,軸建立空間直角坐標系,則,,,,,,設(shè)面的法向量為,則,,則,可取,設(shè)平面的法向量為,則,,則,可取,可知平面與平面所成的銳二面角的余弦值為.【點睛】本題考查由面面平行推證線面平行,涉及用向量法求二面角的大小,屬綜合基礎(chǔ)題.19、(1)(2)【解析】

(1)由基本量法求出公差后可得通項公式;(2)由等差數(shù)列前項和公式求得,可求得.【詳解】解:(1)設(shè)的公差為,由題設(shè)得因為,所以解得,故.(2)由(1)得.所以數(shù)列是以2為首項,2為公比的等比數(shù)列,所以,由得,解得.【點睛】本題考查求等差數(shù)列的通項公式和等比數(shù)列的前項和公式,解題方法是基本量法.20、(1)曲線,曲線.(2).【解析】

(1)用和消去參數(shù)即得的極坐標方程;將兩邊同時乘以,然后由解得直角坐標方程.(2)過極點的直線的參數(shù)方程為,代入到和:中,表示出即可求解.【詳解】解:由和,得,化簡得故:將兩邊同時乘以,得因為,所以得的直角坐標方程.(2)設(shè)直線的極坐標方程由,得,由,得故當(dāng)時,取得最大值此時直線的極坐標方程為:,其直角坐標方程為:.【點睛】考查直角坐標方程、極坐標方程、參數(shù)方程的互相轉(zhuǎn)化以及應(yīng)用圓的極坐標方程中的幾何意義求距離的的最大值方法;中檔題.21、(1);(2)或.【解析】試題分析:直線與圓相切只需圓心到直線的距離等于圓的半徑,直線與曲線相交于兩點,且滿足,只需數(shù)量積為0,要聯(lián)立方程組設(shè)而不求,利用坐標關(guān)系及根與系數(shù)關(guān)系解題,這是解析幾何常用解題方法,第二步利用直線的斜率找出坐標滿足的要求,再利用兩直線與圓相切,求出點的坐標.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論