浙江省金華市義烏市2024屆八年級數(shù)學第二學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
浙江省金華市義烏市2024屆八年級數(shù)學第二學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
浙江省金華市義烏市2024屆八年級數(shù)學第二學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
浙江省金華市義烏市2024屆八年級數(shù)學第二學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
浙江省金華市義烏市2024屆八年級數(shù)學第二學期期末學業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

浙江省金華市義烏市2024屆八年級數(shù)學第二學期期末學業(yè)質(zhì)量監(jiān)測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題(每小題3分,共30分)1.用反證法證明:“若整數(shù)系數(shù)一元二次方程ax2+bx+c=0(a≠0)有有理根,則a,b,c中至少有一個是偶數(shù)”,下列假設(shè)中正確的是()A.假設(shè)a,b,c都是偶數(shù)

B.假設(shè)a,b,c都不是偶數(shù)C.假設(shè)a,b,c至多有一個是偶數(shù)

D.假設(shè)a,b,c至多有兩個是偶數(shù)2.下列四組線段中,不能作為直角三角形三條邊的是()A.8,15,17 B.1,2, C.7,23,25 D.1.5,2,2.53.一次函數(shù)y=﹣x+6的圖象上有兩點A(﹣1,y1)、B(2,y2),則y1與y2的大小關(guān)系是()A.y1>y2 B.y1=y2 C.y1<y2 D.y1≥y24.點和都在直線上,則與的關(guān)系是A. B. C. D.5.如圖,在△ABC中,AB=4,BC=8,AC=6,D、E分別是BC、CA的中點,則△DEC的周長為()A.18 B.8 C.10 D.96.下列汽車標識中,是中心對稱圖形的是()A. B. C. D.7.下列等式成立的是()A. B. C. D.8.如圖,在四邊形中,,交于,平分,,下面結(jié)論:①;②是等邊三角形;③;④,其中正確的有A.1個 B.2個 C.3個 D.4個9.某數(shù)學興趣小組6名成員通過一次數(shù)學競賽進行組內(nèi)評比,他們的成績分別是89,92,91,93,96,91,則關(guān)于這組數(shù)據(jù)說法正確的是()A.中位數(shù)是92.5 B.平均數(shù)是92 C.眾數(shù)是96 D.方差是510.能使分式的值為零的所有x的值是()A.x=1 B.x=﹣1 C.x=1或x=﹣1 D.x=2或x=1二、填空題(每小題3分,共24分)11.化簡:32-312.如圖,已知等腰直角△ABC中,∠BAC=90°,AD⊥BC于點D,AB=5,點E是邊AB上的動點(不與A,B點重合),連接DE,過點D作DF⊥DE交AC于點F,連接EF,點H在線段AD上,且DH=AD,連接EH,HF,記圖中陰影部分的面積為S1,△EHF的面積記為S2,則S1=_____,S2的取值范圍是_____.13.有一組數(shù)據(jù)如下:3、7、4、6、5,那么這組數(shù)據(jù)的方差是_____.14.關(guān)于x的一元二次方程x2+4x+2k﹣1=0有兩個實數(shù)根,則k的取值范圍是_____.15.如圖,在?ABCD中,M為邊CD上一點,將△ADM沿AM折疊至△AD′M處,AD′與CM交于點N.若∠B=55°,∠DAM=24°,則∠NMD′的大小為___度.16.函數(shù)y=kx(k0)的圖象上有兩個點A1(,),A2(,),當<時,>,寫出一個滿足條件的函數(shù)解析式______________.17.如圖,所有正方形的中心均在坐標原點,且各邊與x軸或y軸平行,從內(nèi)到外,它們的邊長依此為2,4,6,8,...,頂點依此用A1,A2,A3,A4......表示,則頂點A55的坐標是___.18.如圖,△OAB繞點O逆時針旋轉(zhuǎn)80°得到△OCD,若∠A=110°,∠D=40°,則∠α的度數(shù)是_____.三、解答題(共66分)19.(10分)如圖,在△ABC中,BD、CE分別為AC、AB邊上的中線,BD、CE交于點H,點G、F分別為HC、HB的中點,連接AH、DE、EF、FG、GD,其中HA=BC.(1)證明:四邊形DEFG為菱形;(2)猜想當AC、AB滿足怎樣的數(shù)量關(guān)系時,四邊形DEFG為正方形,并說明理由.20.(6分)某學校舉行“中國夢,我的夢”演講比賽,初、高中部根據(jù)初賽成績,各選出5名選手組成代表隊決賽,初、高中部代表隊的選手決賽成績?nèi)鐖D所示:(1)根據(jù)圖示填寫表格:平均數(shù)(分)中位數(shù)(分)眾數(shù)(分)初中代表隊8585高中代表隊80(2)結(jié)合兩隊成績的平均數(shù)和中位數(shù),分析哪個隊的決賽成績較好.21.(6分)已知關(guān)于x的一元二次方程總有兩個不相等的實數(shù)根.(1)求m的取值范圍;(2)若此方程的兩根均為正整數(shù),求正整數(shù)m的值.22.(8分)先化簡,再求值:(1),其中.(2),并在2,3,4,5這四個數(shù)中取一個合適的數(shù)作為的值代入求值.23.(8分)如圖,正方形ABCD中,AB=4,點E是對角線AC上的一點,連接DE.過點E作EF⊥ED,交AB于點F,以DE、EF為鄰邊作矩形DEFG,連接AG.(1)求證:矩形DEFG是正方形;(2)求AG+AE的值;(3)若F恰為AB中點,連接DF交AC于點M,請直接寫出ME的長.24.(8分)如圖,在△ABC中,AB=AC,AB的垂直平分線MN交AC于點D,交AB于點E.(1)若∠A=40°,求∠DBC的度數(shù);(2)若AE=6,△CBD的周長為20,求△ABC的周長.25.(10分)如圖,方格紙中的每個小方格都是邊長為1個單位的正方形,在建立平面直角坐標系后,△ABC的頂點均在格點上,點C的坐標為(4,﹣1).①把△ABC向上平移5個單位后得到對應(yīng)的△A1B1C1,畫出△A1B1C1,并寫出C1的坐標;②以原點O為對稱中心,畫出△ABC與關(guān)于原點對稱的△A2B2C2,并寫出點C2的坐標;③以原點O為旋轉(zhuǎn)中心,畫出把△ABC順時針旋轉(zhuǎn)90°的圖形△A3B3C3,并寫出C3的坐標.26.(10分)如圖,已知點A(0,8)、B(8,0)、E(-2,0),動點C從原點O出發(fā)沿OA方向以每秒1個單位長度向點A運動,動點D從點B出發(fā)沿BO方向以每秒2個單位長度向點O運動,動點C、D同時出發(fā),當動點D到達原點O時,點C、D停止運動,設(shè)運動時間為t秒。(1)填空:直線AB的解析式是_____________________;(2)求t的值,使得直線CD∥AB;(3)是否存在時刻t,使得△ECD是等腰三角形?若存在,請求出一個這樣的t值;若不存在,請說明理由。

參考答案一、選擇題(每小題3分,共30分)1、B【解題分析】

用反證法法證明數(shù)學命題時,應(yīng)先假設(shè)命題的反面成立,求出要證的命題的否定,即為所求.【題目詳解】解:用反證法法證明數(shù)學命題時,應(yīng)先假設(shè)要證的命題的反面成立,即要證的命題的否定成立,

而命題:“若整數(shù)系數(shù)一元二次方程ax2+bx+c=0(a≠0)有有理根,則a,b,c中至少有一個是偶數(shù)”的否定為:“假設(shè)a,b,c都不是偶數(shù)”,

故選:B.2、C【解題分析】

根據(jù)勾股定理的逆定理逐一判斷即可.【題目詳解】A.因為82+152=172,故以8,15,17為三邊長能構(gòu)成直角三角形,故本選項不符合題意;B.12+22=()2,故以1,2,為三邊長能構(gòu)成直角三角形,故本選項不符合題意;C.72+232≠252,故以7,23,25為三邊長不能構(gòu)成直角三角形,故本選項符合題意;D.,故以為三邊長能構(gòu)成直角三角形,故本選項不符合題意.故選C.【題目點撥】此題考查的是直角三角形的判定,掌握用勾股定理的逆定理判定直角三角形是解決此題的關(guān)鍵.3、A【解題分析】試題分析:k=﹣1<0,y將隨x的增大而減小,根據(jù)﹣1<1即可得出答案.解:∵k=﹣1<0,y將隨x的增大而減小,又∵﹣1<1,∴y1>y1.故選A.【點評】本題考查一次函數(shù)的圖象性質(zhì)的應(yīng)用,注意:一次函數(shù)y=kx+b(k、b為常數(shù),k≠0),當k>0,y隨x增大而增大;當k<0時,y將隨x的增大而減?。?、D【解題分析】

根據(jù)一次函數(shù)圖象上點的坐標特征,將點和分別代入直線方程,分別求得和的值,然后進行比較.【題目詳解】根據(jù)題意得:,即;,即;,.故選:.【題目點撥】本題考查了一次函數(shù)圖象上點的坐標特征,一次函數(shù)圖象上的點滿足該函數(shù)的解析式.5、D【解題分析】

根據(jù)三角形中位線的性質(zhì)可得出DE,CD,EC的長度,則△DEC的周長可求.【題目詳解】∵D、E分別是BC、CA的中點,∴DE是△ABC的中位線.∵AB=4,BC=8,AC=6,∴DE=AB=2,EC=AC=3,CD=CB=4,∴△DEC的周長=2+3+4=9,故選:D.【題目點撥】本題主要考查三角形中位線,掌握三角形中位線的性質(zhì)是解題的關(guān)鍵.6、D【解題分析】

根據(jù)中心對稱圖形的概念判斷即可.(中心對稱:在平面內(nèi),把一個圖形繞著某個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形與另一個圖形重合.)【題目詳解】根據(jù)中心對稱圖形的概念把圖形繞著某一點旋轉(zhuǎn)180°后,只有D選項才能與原圖形重合,故選D.【題目點撥】本題主要考查中心對稱圖形的概念,是基本知識點,應(yīng)當熟練的掌握.7、B【解題分析】

根據(jù)二次根式的加減、乘除運算法則以及二次根式的性質(zhì)解答即可.【題目詳解】解:A.不是同類二次根式,故A錯誤;B.,故B正確;C.,故B錯誤;D.,故D錯誤.故答案為B.【題目點撥】本題考查了二次根式的加減、乘除運算法則以及二次根式的性質(zhì),牢記并靈活運用運算法則和性質(zhì)是解答本題的關(guān)鍵.8、C【解題分析】

由兩組對邊平行證明四邊形AECD是平行四邊形,由AD=DC得出四邊形AECD是菱形,得出AE=EC=CD=AD,則∠EAC=∠ECA,由角平分線定義得出∠EAB=∠EAC,則∠EAB=∠EAC=∠ECA,證出∠EAB=∠EAC=∠ECA=30°,則BE=AE,AC=2AB,①正確;由AO=CO得出AB=AO,由∠EAB=∠EAC=30°得出∠BAO=60°,則△ABO是等邊三角形,②正確;由菱形的性質(zhì)得出S△ADC=S△AEC=AB?CE,S△ABE=AB?BE,由BE=AE=CE,則S△ADC=2S△ABE,③錯誤;由DC=AE,BE=AE,則DC=2BE,④正確;即可得出結(jié)果.【題目詳解】解:∵AD∥BC,AE∥CD,

∴四邊形AECD是平行四邊形,

∵AD=DC,

∴四邊形AECD是菱形,

∴AE=EC=CD=AD,

∴∠EAC=∠ECA,

∵AE平分∠BAC,

∴∠EAB=∠EAC,

∴∠EAB=∠EAC=∠ECA,

∵∠ABC=90°,

∴∠EAB=∠EAC=∠ECA=30°,

∴BE=AE,AC=2AB,①正確;

∵AO=CO,

∴AB=AO,

∵∠EAB=∠EAC=30°,

∴∠BAO=60°,

∴△ABO是等邊三角形,②正確;

∵四邊形AECD是菱形,

∴S△ADC=S△AEC=AB?CE,

S△ABE=AB?BE,

∵BE=AE=CE,

∴S△ADC=2S△ABE,③錯誤;

∵DC=AE,BE=AE,

∴DC=2BE,④正確;

故選:C.【題目點撥】本題考查平行四邊形的判定、菱形的判定與性質(zhì)、角平分線定義、等邊三角形的判定、含30°角直角三角形的性質(zhì)、三角形面積的計算等知識,熟練掌握菱形的性質(zhì)與含30°角直角三角形的性質(zhì)是解題關(guān)鍵.9、B【解題分析】試題解析:這組數(shù)據(jù)按照從小到大的順序排列為:89,91,91,92,93,96,則中位數(shù)為:,故A錯誤;平均數(shù)為:,故B正確;眾數(shù)為:91,故C錯誤;方差S2==,故D錯誤.故選A.10、B【解題分析】分析:根據(jù)分式的值為0的條件:分子等于0,分母≠0,構(gòu)成不等式組求解即可.詳解:由題意可知:解得x=-1.故選B.點睛:此題主要考查了分式的值為0的條件,利用分式的值為0的條件:分子等于0,分母≠0,構(gòu)造不等式組求解是解題關(guān)鍵.二、填空題(每小題3分,共24分)11、-6【解題分析】

根據(jù)二次根式的乘法運算法則以及絕對值的性質(zhì)和二次根式的化簡分別化簡整理得出即可:【題目詳解】32故答案為-612、【解題分析】

作EM⊥BC于M,作FN⊥AD于N,根據(jù)題意可證△ADF≌△BDE,可得△DFE是等腰直角三角形.可證△BME≌△ANF,可得NF=BM.所以S1=HD×BD,

代入可求S1.由點E是邊AB上的動點(不與A,B點重合),可得DE垂直AB時DE最小,即,且S2=S△DEF-S1,代入可求S2的取值范圍【題目詳解】作EM⊥BC于M,作FN⊥AD于N,∵EM⊥BD,AD⊥BC∴EM∥AD∵△ABC是等腰直角三角形,AD⊥BC,AB=5∴∠B=∠C=45°=∠BAD=∠DAC,BD=CD=AD=∵DF⊥DE∴∠ADF+∠ADE=90°且∠ADE+∠BDE=90°∴∠ADF=∠BDE且AD=BD,∠B=∠DAF=45°∴△ADF≌△BDE,∴AF=BE,DE=DF∴△DEF是等腰直角三角形,∵AF=BE,∠B=∠DAF=45°,∠EMB=∠ANF=90°∴△BME≌△ANF∴NF=BM∵∵點E是邊AB上的動點∴∵∴【題目點撥】本題考查全等三角形的判定和性質(zhì),等腰直角三角形的性質(zhì),關(guān)鍵是證△DEF是等腰直角三角形.13、1【解題分析】試題分析:平均數(shù)為:(3+7+4+6+5)÷5=5,S1=×[(3﹣5)1+(7﹣5)1+(4﹣5)1+(6﹣5)1+(5﹣5)1]=×(4+4+1+1+0)=1.故答案為1.點睛:本題考查方差的定義:一般地,設(shè)n個數(shù)據(jù)x1,x1,…xn的平均數(shù)為,則方差S1=[(x1-)1+(x1-)1+…+(xn-)1],它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.14、k≤【解題分析】

根據(jù)方程有兩個實數(shù)根可以得到根的判別式,進而求出的取值范圍.【題目詳解】解:由題意可知:解得:故答案為:【題目點撥】本題考查了根的判別式的逆用---從方程根的情況確定方程中待定系數(shù)的取值范圍,屬中檔題型,解題時需注意認真理解題意.15、22.【解題分析】

由平行四邊形的性質(zhì)得出∠D=∠B=55°,由折疊的性質(zhì)得:∠D'=∠D=55°,∠MAD'=∠DAM=24°,由三角形的外角性質(zhì)求出∠AMN=79°,與三角形內(nèi)角和定理求出∠AMD'=101°,即可得出∠NMD'的大小.【題目詳解】解:∵四邊形ABCD是平行四邊形,∴∠D=∠B=55°,由折疊的性質(zhì)得:∠D'=∠D=55°,∠MAD'=∠DAM=24°,∴∠AMN=∠D+∠DAM=55°+24°=79°,∠AMD'=180°-∠MAD'-∠D'=101°,∴∠NMD'=101°-79°=22°;故答案為:22.【題目點撥】本題考查了平行四邊形的性質(zhì)、折疊的性質(zhì)、三角形的外角性質(zhì)以及三角形內(nèi)角和定理;熟練掌握平行四邊形的性質(zhì)和折疊的性質(zhì),求出∠AMN和∠AMD'是解決問題的關(guān)鍵.16、y=-x(k<0即可)【解題分析】

根據(jù)A1(x1,y1),A2(x2,y2)滿足x1<x2時,y1>y2判斷出函數(shù)圖象的增減性即可.【題目詳解】解:∵A1(x1,y1),A2(x2,y2)滿足x1<x2時,y1>y2,

∴函數(shù)y=kx(k≠0)滿足k<0

∴y=-x(k<0即可);

故答案為:y=-x(k<0即可).【題目點撥】本題考查的是一次函數(shù)的增減性,即一次函數(shù)y=kx+b(k≠0)中,當k>0,y隨x的增大而增大;當k<0,y隨x的增大而減?。?7、(14,14)【解題分析】

觀察圖象,每四個點一圈進行循環(huán),每一圈第一個點在第三象限,根據(jù)點的腳標與坐標尋找規(guī)律【題目詳解】∵55=413+3,A與A在同一象限,即都在第一象限,根據(jù)題中圖形中的規(guī)律可得3=40+3,A的坐標為(0+1,0+1),即A(1,1),7=41+3,A的坐標為(1+1,1+1),A(2,2),11=42+3,A的坐標為(2+1,2+1),A(3,3);…55=413+3,A(14,14),A的坐標為(13+1,13+1)故答案為(14,14)【題目點撥】此題考查點的坐標,解題關(guān)鍵在于發(fā)現(xiàn)坐標的規(guī)律18、50°【解題分析】

已知旋轉(zhuǎn)角為80°,即∠DOB=80°,欲求∠α的度數(shù),必須先求出∠AOB的度數(shù),利用三角形內(nèi)角和定理求解即可.【題目詳解】解:由旋轉(zhuǎn)的性質(zhì)知:∠A=∠C=110°,∠D=∠B=40°;根據(jù)三角形內(nèi)角和定理知:∠AOB=180°﹣110°﹣40°=30°;已知旋轉(zhuǎn)角∠DOB=80°,則∠α=∠DOB﹣∠AOB=50°.故答案為50°.【題目點撥】此題主要考查的是旋轉(zhuǎn)的性質(zhì),同時還涉及到三角形內(nèi)角和定理的運用,難度不大.三、解答題(共66分)19、(1)證明見解析;(2)當AC=AB時,四邊形DEFG為正方形,證明見解析【解題分析】

(1)利用三角形中位線定理推知ED∥FG,ED=FG,則由“對邊平行且相等的四邊形是平行四邊形”證得四邊形DEFG是平行四邊形,同理得EF=HA=BC=DE,可得結(jié)論;(2)AC=AB時,四邊形DEFG為正方形,通過證明△DCB≌△EBC(SAS),得HC=HB,證明對角線DF=EG,可得結(jié)論.【題目詳解】(1)證明:∵D、E分別為AC、AB的中點,∴ED∥BC,ED=BC.同理FG∥BC,F(xiàn)G=BC,∴ED∥FG,ED=FG,∴四邊形DEFG是平行四邊形,∵AE=BE,F(xiàn)H=BF,∴EF=HA,∵BC=HA,∴EF=BC=DE,∴?DEFG是菱形;(2)解:猜想:AC=AB時,四邊形DEFG為正方形,理由是:∵AB=AC,∴∠ACB=∠ABC,∵BD、CE分別為AC、AB邊上的中線,∴CD=AC,BE=AB,∴CD=BE,在△DCB和△EBC中,∵∴△DCB≌△EBC(SAS),∴∠DBC=∠ECB,∴HC=HB,∵點G、F分別為HC、HB的中點,∴HG=HC,HF=HB,∴GH=HF,由(1)知:四邊形DEFG是菱形,∴DF=2FH,EG=2GH,∴DF=EG,∴四邊形DEFG為正方形.故答案為(1)證明過程見解析;(2)當AC=AB時,四邊形DEFG為正方形.【題目點撥】本題考查了平行四邊形、矩形的判定、菱形的判定、正方形的判定、三角形的中位線性質(zhì)定理,三角形中線的性質(zhì)及等腰三角形的性質(zhì),其中三角形的中位線的性質(zhì)定理為證明線段相等和平行提供了依據(jù).20、(1)詳見解析;(2)初中部成績好些【解題分析】

(1)根據(jù)成績表加以計算可補全統(tǒng)計表.根據(jù)平均數(shù)、眾數(shù)、中位數(shù)的統(tǒng)計意義回答;

(2)根據(jù)平均數(shù)和中位數(shù)的意義即可得出答案;【題目詳解】解:(1)因為共有5名選手,把這些數(shù)從小到大排列,則初中代表隊的中位數(shù)是85;高中代表隊的平均數(shù)是:(70+100+100+75+80)=85(分),因為100出現(xiàn)的次數(shù)最多,則眾數(shù)是100(分);補全表格如下:平均數(shù)(分)中位數(shù)(分)眾數(shù)(分)初中代表隊858585高中代表隊8580100(2)初中部成績好些.因為兩個隊的平均數(shù)都相同,初中部的中位數(shù)高,所以在平均數(shù)相同的情況下中位數(shù)高的初中部成績好些.【題目點撥】此題主要考查了平均數(shù)、眾數(shù)、中位數(shù)、方差的統(tǒng)計意義.找中位數(shù)要把數(shù)據(jù)按從小到大的順序排列,位于最中間的一-個數(shù)或兩個數(shù)的平均數(shù)為中位數(shù);眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),注意眾數(shù)可以不止一個;平均數(shù)是指在一組數(shù)據(jù)中所有數(shù)據(jù)之和再除以數(shù)據(jù)的個數(shù).21、(1)當m≠0和3時,原方程有兩個不相等的實數(shù)根;(2)可取的正整數(shù)m的值分別為1.【解題分析】

(1)利用一元二次方程的定義和判別式的意義得到m≠0且△=[-(m+3)]2-4×m×3=(m-3)2>0,從而可得到m的范圍;

(2)利用求根公式解方程得到x1=1,x2=,利用此方程的兩根均為正整數(shù)得到m=1或m=3,然后利用(1)的范圍可確定m的值.【題目詳解】解:(1)由題意得:m≠0且>0,∴當m≠0和3時,原方程有兩個不相等的實數(shù)根.(2)∵此方程的兩根均為正整數(shù),即,解方程得,.∴可取的正整數(shù)m的值分別為1.【題目點撥】本題考查了根的判別式:一元二次方程ax2+bx+c=0(a≠0)的根與△=b2-4ac有如下關(guān)系:當△>0時,方程有兩個不相等的實數(shù)根;當△=0時,方程有兩個相等的實數(shù)根;當△<0時,方程無實數(shù)根.22、(1),;(2),時,原式.或(則時,原式)【解題分析】

(1)根據(jù)分式的運算法則把所給的分式化為最簡分式后,再代入求值即可;(2)根據(jù)分式的運算法則把所給的分式化為最簡分式后,再選擇一個使每個分式都有意義的a的值代入求值即可.【題目詳解】(1),當時,原式.(2)原式,∵、2、3,∴或,則時,原式.或(則時,原式)只要一個結(jié)果正確即可【題目點撥】本題考查了分式的化簡求值,根據(jù)分式的運算法則把所給的分式化為最簡分式是解決問題的關(guān)鍵.23、(1)見解析;(2)AE+AG==4;(3)EM=.【解題分析】

(1)如圖,作EM⊥AD于M,EN⊥AB于N.只要證明△EMD≌△ENF即可解決問題;

(2)只要證明△ADG≌△CDE,可得AG=EC即可解決問題;

(3)如圖,作EH⊥DF于H.想辦法求出EH,HM即可解決問題;【題目詳解】(1)如圖,作EM⊥AD于M,EN⊥AB于N.∵四邊形ABCD是正方形,∴∠EAD=∠EAB,∵EM⊥AD于M,EN⊥AB于N,∴EM=EN,∵∠EMA=∠ENA=∠DAB=90°,∴四邊形ANEM是矩形,∴∠MEN=∠DEF=90°,∴∠DEM=∠FEN,∵∠EMD=∠ENF=90°,∴△EMD≌△ENF,∴ED=EF,∵四邊形DEFG是矩形,∴四邊形DEFG是正方形.(2)∵四邊形DEFG是正方形,四邊形ABCD是正方形,∴DG=DE,DC=DA=AB=4,∠GDE=∠ADC=90°,∴∠ADG=∠CDE,∴△ADG≌△CDE,∴AG=CE,∴AE+AG=AE+EC=AC=AD=4.(3)如圖,作EH⊥DF于H.∵四邊形ABCD是正方形,∴AB=AD=4,AB∥CD,∵F是AB中點,∴AF=FB∴DF=,∵△DEF是等腰直角三角形,EH⊥AD,∴DH=HF,∴EH=DF=,∵AF∥CD,∴AF:CD=FM:MD=1:2,∴FM=,∴HM=HF﹣FM=,在Rt△EHM中,EM=.【題目點撥】本題考查正方形的性質(zhì)、全等三角形的判定和性質(zhì)、矩形的性質(zhì)和判定、解直角三角形等知識,解題的關(guān)鍵是學會添加常用輔助線,構(gòu)造直角三角形解決問題,屬于中考常考題型.24、(1)30°;(2)1.【解題分析】

(1)由在△ABC中,AB=AC,∠A=40°,利用等腰三角形的性質(zhì),即可求得∠ABC的度數(shù),然后由AB的垂直平分線MN交AC于點D.根據(jù)線段垂直平分線的性質(zhì),可得AD=BD,可得∠ABD的度數(shù),即可求得

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論