計算機視覺與應(yīng)用 課件 10.1 深度學(xué)習(xí)的基本概念_第1頁
計算機視覺與應(yīng)用 課件 10.1 深度學(xué)習(xí)的基本概念_第2頁
計算機視覺與應(yīng)用 課件 10.1 深度學(xué)習(xí)的基本概念_第3頁
計算機視覺與應(yīng)用 課件 10.1 深度學(xué)習(xí)的基本概念_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

10.1深度學(xué)習(xí)的基本概念CONTENTS目錄深度學(xué)習(xí)的基本概念01深度學(xué)習(xí)(DL,DeepLearning)是機器學(xué)習(xí)(ML,MachineLearning)領(lǐng)域中一個新的研究方向,它被引入機器學(xué)習(xí)使其更接近于最初的目標——人工智能(AI,ArtificialIntelligence)。深度學(xué)習(xí)的概念源于人工神經(jīng)網(wǎng)絡(luò)的研究,含多個隱藏層的多層感知器就是一種深度學(xué)習(xí)結(jié)構(gòu)。深度學(xué)習(xí)通過組合低層特征形成更加抽象的高層表示屬性類別或特征,學(xué)習(xí)樣本數(shù)據(jù)的內(nèi)在規(guī)律和表示層次,這些學(xué)習(xí)過程中獲得的信息對諸如文字,圖像和聲音等數(shù)據(jù)的解釋有很大的幫助。它的最終目標是讓機器能夠像人一樣具有分析學(xué)習(xí)能力,能夠識別文字、圖像和聲音等數(shù)據(jù)。深度學(xué)習(xí)是一個復(fù)雜的機器學(xué)習(xí)算法,在語音和圖像識別方面取得的效果,遠遠超過先前相關(guān)技術(shù)。深度學(xué)習(xí)在搜索技術(shù)、數(shù)據(jù)挖掘、機器學(xué)習(xí)、機器翻譯、自然語言處理、多媒體學(xué)習(xí)、語音、推薦和個性化技術(shù),以及其他相關(guān)領(lǐng)域都取得了很多成果。深度學(xué)習(xí)使機器模仿視聽和思考等人類的活動,解決了很多復(fù)雜的模式識別難題,使得人工智能相關(guān)技術(shù)取得了很

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論