版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
浙江省慈溪市2024年高三最后一卷數(shù)學(xué)試卷考生請(qǐng)注意:1.答題前請(qǐng)將考場、試室號(hào)、座位號(hào)、考生號(hào)、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號(hào)內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請(qǐng)將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知雙曲線C:()的左、右焦點(diǎn)分別為,過的直線l與雙曲線C的左支交于A、B兩點(diǎn).若,則雙曲線C的漸近線方程為()A. B. C. D.2.如圖所示程序框圖,若判斷框內(nèi)為“”,則輸出()A.2 B.10 C.34 D.983.過拋物線的焦點(diǎn)的直線交該拋物線于,兩點(diǎn),為坐標(biāo)原點(diǎn).若,則直線的斜率為()A. B. C. D.4.已知,滿足,且的最大值是最小值的4倍,則的值是()A.4 B. C. D.5.趙爽是我國古代數(shù)學(xué)家、天文學(xué)家,大約公元222年,趙爽為《周髀算經(jīng)》一書作序時(shí),介紹了“勾股圓方圖”,又稱“趙爽弦圖”(以弦為邊長得到的正方形是由個(gè)全等的直角三角形再加上中間的一個(gè)小正方形組成的,如圖(1)),類比“趙爽弦圖”,可類似地構(gòu)造如圖(2)所示的圖形,它是由個(gè)全等的三角形與中間的一個(gè)小正六邊形組成的一個(gè)大正六邊形,設(shè),若在大正六邊形中隨機(jī)取一點(diǎn),則此點(diǎn)取自小正六邊形的概率為()A. B.C. D.6.已知雙曲線與雙曲線有相同的漸近線,則雙曲線的離心率為()A. B. C. D.7.若函數(shù),在區(qū)間上任取三個(gè)實(shí)數(shù),,均存在以,,為邊長的三角形,則實(shí)數(shù)的取值范圍是()A. B. C. D.8.已知函數(shù)的圖像上有且僅有四個(gè)不同的關(guān)于直線對(duì)稱的點(diǎn)在的圖像上,則的取值范圍是()A. B. C. D.9.洛書,古稱龜書,是陰陽五行術(shù)數(shù)之源,在古代傳說中有神龜出于洛水,其甲殼上心有此圖象,結(jié)構(gòu)是戴九履一,左三右七,二四為肩,六八為足,以五居中,五方白圈皆陽數(shù),四角黑點(diǎn)為陰數(shù).如圖,若從四個(gè)陰數(shù)和五個(gè)陽數(shù)中分別隨機(jī)選取1個(gè)數(shù),則其和等于11的概率是().A. B. C. D.10.已知函數(shù),若方程恰有兩個(gè)不同實(shí)根,則正數(shù)m的取值范圍為()A. B.C. D.11.某幾何體的三視圖如圖所示,則該幾何體的體積為()A. B. C. D.12.若復(fù)數(shù)滿足,復(fù)數(shù)的共軛復(fù)數(shù)是,則()A.1 B.0 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,則_____14.已知某幾何體的三視圖如圖所示,則該幾何體外接球的表面積是______.15.如圖,在△ABC中,E為邊AC上一點(diǎn),且,P為BE上一點(diǎn),且滿足,則的最小值為______.16.某校開展“我身邊的榜樣”評(píng)選活動(dòng),現(xiàn)對(duì)3名候選人甲、乙、丙進(jìn)行不記名投票,投票要求詳見選票.這3名候選人的得票數(shù)(不考慮是否有效)分別為總票數(shù)的88%,75%,46%,則本次投票的有效率(有效票數(shù)與總票數(shù)的比值)最高可能為百分之________.“我身邊的榜樣”評(píng)選選票候選人符號(hào)注:1.同意畫“○”,不同意畫“×”.2.每張選票“○”的個(gè)數(shù)不超過2時(shí)才為有效票.甲乙丙三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓()經(jīng)過點(diǎn),離心率為,、、為橢圓上不同的三點(diǎn),且滿足,為坐標(biāo)原點(diǎn).(1)若直線、的斜率都存在,求證:為定值;(2)求的取值范圍.18.(12分)已知函數(shù).(1)解不等式;(2)若,,,求證:.19.(12分)設(shè)函數(shù).(1)求不等式的解集;(2)若的最小值為,且,求的最小值.20.(12分)已知橢圓過點(diǎn)且橢圓的左、右焦點(diǎn)與短軸的端點(diǎn)構(gòu)成的四邊形的面積為.(1)求橢圓C的標(biāo)準(zhǔn)方程:(2)設(shè)A是橢圓的左頂點(diǎn),過右焦點(diǎn)F的直線,與橢圓交于P,Q,直線AP,AQ與直線交于M,N,線段MN的中點(diǎn)為E.①求證:;②記,,的面積分別為、、,求證:為定值.21.(12分)已知函數(shù).(1)證明:當(dāng)時(shí),;(2)若函數(shù)有三個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.22.(10分)我國在2018年社保又出新的好消息,之前流動(dòng)就業(yè)人員跨地區(qū)就業(yè)后,社保轉(zhuǎn)移接續(xù)的手續(xù)往往比較繁瑣,費(fèi)時(shí)費(fèi)力.社保改革后將簡化手續(xù),深得流動(dòng)就業(yè)人員的贊譽(yù).某市社保局從2018年辦理社保的人員中抽取300人,得到其辦理手續(xù)所需時(shí)間(天)與人數(shù)的頻數(shù)分布表:時(shí)間人數(shù)156090754515(1)若300名辦理社保的人員中流動(dòng)人員210人,非流動(dòng)人員90人,若辦理時(shí)間超過4天的人員里非流動(dòng)人員有60人,請(qǐng)完成辦理社保手續(xù)所需時(shí)間與是否流動(dòng)人員的列聯(lián)表,并判斷是否有95%的把握認(rèn)為“辦理社保手續(xù)所需時(shí)間與是否流動(dòng)人員”有關(guān).列聯(lián)表如下流動(dòng)人員非流動(dòng)人員總計(jì)辦理社保手續(xù)所需時(shí)間不超過4天辦理社保手續(xù)所需時(shí)間超過4天60總計(jì)21090300(2)為了改進(jìn)工作作風(fēng),提高效率,從抽取的300人中辦理時(shí)間為流動(dòng)人員中利用分層抽樣,抽取12名流動(dòng)人員召開座談會(huì),其中3人要求交書面材料,3人中辦理的時(shí)間為的人數(shù)為,求出分布列及期望值.附:0.100.050.0100.0052.7063.8416.6357.879
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
設(shè),利用余弦定理,結(jié)合雙曲線的定義進(jìn)行求解即可.【詳解】設(shè),由雙曲線的定義可知:因此再由雙曲線的定義可知:,在三角形中,由余弦定理可知:,因此雙曲線的漸近線方程為:.故選:D【點(diǎn)睛】本題考查了雙曲線的定義的應(yīng)用,考查了余弦定理的應(yīng)用,考查了雙曲線的漸近線方程,考查了數(shù)學(xué)運(yùn)算能力.2、C【解析】
由題意,逐步分析循環(huán)中各變量的值的變化情況,即可得解.【詳解】由題意運(yùn)行程序可得:,,,;,,,;,,,;不成立,此時(shí)輸出.故選:C.【點(diǎn)睛】本題考查了程序框圖,只需在理解程序框圖的前提下細(xì)心計(jì)算即可,屬于基礎(chǔ)題.3、D【解析】
根據(jù)拋物線的定義,結(jié)合,求出的坐標(biāo),然后求出的斜率即可.【詳解】解:拋物線的焦點(diǎn),準(zhǔn)線方程為,設(shè),則,故,此時(shí),即.則直線的斜率.故選:D.【點(diǎn)睛】本題考查了拋物線的定義,直線斜率公式,屬于中檔題.4、D【解析】試題分析:先畫出可行域如圖:由,得,由,得,當(dāng)直線過點(diǎn)時(shí),目標(biāo)函數(shù)取得最大值,最大值為3;當(dāng)直線過點(diǎn)時(shí),目標(biāo)函數(shù)取得最小值,最小值為3a;由條件得,所以,故選D.考點(diǎn):線性規(guī)劃.5、D【解析】
設(shè),則,小正六邊形的邊長為,利用余弦定理可得大正六邊形的邊長為,再利用面積之比可得結(jié)論.【詳解】由題意,設(shè),則,即小正六邊形的邊長為,所以,,,在中,由余弦定理得,即,解得,所以,大正六邊形的邊長為,所以,小正六邊形的面積為,大正六邊形的面積為,所以,此點(diǎn)取自小正六邊形的概率.故選:D.【點(diǎn)睛】本題考查概率的求法,考查余弦定理、幾何概型等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.6、C【解析】
由雙曲線與雙曲線有相同的漸近線,列出方程求出的值,即可求解雙曲線的離心率,得到答案.【詳解】由雙曲線與雙曲線有相同的漸近線,可得,解得,此時(shí)雙曲線,則曲線的離心率為,故選C.【點(diǎn)睛】本題主要考查了雙曲線的標(biāo)準(zhǔn)方程及其簡單的幾何性質(zhì)的應(yīng)用,其中解答中熟記雙曲線的幾何性質(zhì),準(zhǔn)確運(yùn)算是解答的關(guān)鍵,著重考查了運(yùn)算與求解能力,屬于基礎(chǔ)題.7、D【解析】
利用導(dǎo)數(shù)求得在區(qū)間上的最大值和最小,根據(jù)三角形兩邊的和大于第三邊列不等式,由此求得的取值范圍.【詳解】的定義域?yàn)椋?,所以在上遞減,在上遞增,在處取得極小值也即是最小值,,,,,所以在區(qū)間上的最大值為.要使在區(qū)間上任取三個(gè)實(shí)數(shù),,均存在以,,為邊長的三角形,則需恒成立,且,也即,也即當(dāng)、時(shí),成立,即,且,解得.所以的取值范圍是.故選:D【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)研究函數(shù)的最值,考查恒成立問題的求解,屬于中檔題.8、D【解析】
根據(jù)對(duì)稱關(guān)系可將問題轉(zhuǎn)化為與有且僅有四個(gè)不同的交點(diǎn);利用導(dǎo)數(shù)研究的單調(diào)性從而得到的圖象;由直線恒過定點(diǎn),通過數(shù)形結(jié)合的方式可確定;利用過某一點(diǎn)曲線切線斜率的求解方法可求得和,進(jìn)而得到結(jié)果.【詳解】關(guān)于直線對(duì)稱的直線方程為:原題等價(jià)于與有且僅有四個(gè)不同的交點(diǎn)由可知,直線恒過點(diǎn)當(dāng)時(shí),在上單調(diào)遞減;在上單調(diào)遞增由此可得圖象如下圖所示:其中、為過點(diǎn)的曲線的兩條切線,切點(diǎn)分別為由圖象可知,當(dāng)時(shí),與有且僅有四個(gè)不同的交點(diǎn)設(shè),,則,解得:設(shè),,則,解得:,則本題正確選項(xiàng):【點(diǎn)睛】本題考查根據(jù)直線與曲線交點(diǎn)個(gè)數(shù)確定參數(shù)范圍的問題;涉及到過某一點(diǎn)的曲線切線斜率的求解問題;解題關(guān)鍵是能夠通過對(duì)稱性將問題轉(zhuǎn)化為直線與曲線交點(diǎn)個(gè)數(shù)的問題,通過確定直線恒過的定點(diǎn),采用數(shù)形結(jié)合的方式來進(jìn)行求解.9、A【解析】
基本事件總數(shù),利用列舉法求出其和等于11包含的基本事件有4個(gè),由此能求出其和等于11的概率.【詳解】解:從四個(gè)陰數(shù)和五個(gè)陽數(shù)中分別隨機(jī)選取1個(gè)數(shù),基本事件總數(shù),其和等于11包含的基本事件有:,,,,共4個(gè),其和等于的概率.故選:.【點(diǎn)睛】本題考查概率的求法,考查古典概型等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,屬于基礎(chǔ)題.10、D【解析】
當(dāng)時(shí),函數(shù)周期為,畫出函數(shù)圖像,如圖所示,方程兩個(gè)不同實(shí)根,即函數(shù)和有圖像兩個(gè)交點(diǎn),計(jì)算,,根據(jù)圖像得到答案.【詳解】當(dāng)時(shí),,故函數(shù)周期為,畫出函數(shù)圖像,如圖所示:方程,即,即函數(shù)和有兩個(gè)交點(diǎn).,,故,,,,.根據(jù)圖像知:.故選:.【點(diǎn)睛】本題考查了函數(shù)的零點(diǎn)問題,確定函數(shù)周期畫出函數(shù)圖像是解題的關(guān)鍵.11、D【解析】
結(jié)合三視圖可知,該幾何體的上半部分是半個(gè)圓錐,下半部分是一個(gè)底面邊長為4,高為4的正三棱柱,分別求出體積即可.【詳解】由三視圖可知該幾何體的上半部分是半個(gè)圓錐,下半部分是一個(gè)底面邊長為4,高為4的正三棱柱,則上半部分的半個(gè)圓錐的體積,下半部分的正三棱柱的體積,故該幾何體的體積.故選:D.【點(diǎn)睛】本題考查三視圖,考查空間幾何體的體積,考查空間想象能力與運(yùn)算求解能力,屬于中檔題.12、C【解析】
根據(jù)復(fù)數(shù)代數(shù)形式的運(yùn)算法則求出,再根據(jù)共軛復(fù)數(shù)的概念求解即可.【詳解】解:∵,∴,則,∴,故選:C.【點(diǎn)睛】本題主要考查復(fù)數(shù)代數(shù)形式的運(yùn)算法則,考查共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
化簡得,利用周期即可求出答案.【詳解】解:,∴函數(shù)的最小正周期為6,∴,,故答案為:.【點(diǎn)睛】本題主要考查三角函數(shù)的性質(zhì)的應(yīng)用,屬于基礎(chǔ)題.14、【解析】
先由三視圖在長方體中將其還原成直觀圖,再利用球的直徑是長方體體對(duì)角線即可解決.【詳解】由三視圖知該幾何體是一個(gè)三棱錐,如圖所示長方體對(duì)角線長為,所以三棱錐外接球半徑為,故所求外接球的表面積.故答案為:.【點(diǎn)睛】本題考查幾何體三視圖以及幾何體外接球的表面積,考查學(xué)生空間想象能力以及基本計(jì)算能力,是一道基礎(chǔ)題.15、【解析】試題分析:根據(jù)題意有,因?yàn)槿c(diǎn)共線,所以有,從而有,所以的最小值是.考點(diǎn):向量的運(yùn)算,基本不等式.【方法點(diǎn)睛】該題考查的是有關(guān)應(yīng)用基本不等式求最值的問題,屬于中檔題目,在解題的過程中,關(guān)鍵步驟在于對(duì)題中條件的轉(zhuǎn)化,根據(jù)三點(diǎn)共線,結(jié)合向量的性質(zhì)可知,從而等價(jià)于已知兩個(gè)正數(shù)的整式形式和為定值,求分式形式和的最值的問題,兩式乘積,最后應(yīng)用基本不等式求得結(jié)果,最后再加,得出最后的答案.16、91【解析】
設(shè)共有選票張,且票對(duì)應(yīng)張數(shù)為,由此可構(gòu)造不等式組化簡得到,由投票有效率越高越小,可知,由此計(jì)算可得投票有效率.【詳解】不妨設(shè)共有選票張,投票的有,票的有,票的有,則由題意可得:,化簡得:,即,投票有效率越高,越小,則,,故本次投票的有效率(有效票數(shù)與總票數(shù)的比值)最高可能為.故答案為:.【點(diǎn)睛】本題考查線性規(guī)劃的實(shí)際應(yīng)用問題,關(guān)鍵是能夠根據(jù)已知條件構(gòu)造出變量所滿足的關(guān)系式.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)證明見解析;(2).【解析】
(1)首先根據(jù)題中條件求出橢圓方程,設(shè)、、點(diǎn)坐標(biāo),根據(jù)利用坐標(biāo)表示出即可得證;(2)設(shè)直線方程,再與橢圓方程聯(lián)立利用韋達(dá)定理表示出,即可求出范圍.【詳解】(1)依題有,所以橢圓方程為.設(shè),,,由為的重心,;又因?yàn)椋?,,,?)當(dāng)?shù)男甭什淮嬖跁r(shí):,,,代入橢圓得,,,當(dāng)?shù)男甭蚀嬖跁r(shí):設(shè)直線為,這里,由,,根據(jù)韋達(dá)定理有,,,故,代入橢圓方程有,又因?yàn)?,綜上,的范圍是.【點(diǎn)睛】本題主要考查了橢圓方程的求解,三角形重心的坐標(biāo)關(guān)系,直線與橢圓所交弦長,屬于一般題.18、(1);(2)證明見解析.【解析】
(1)分、、三種情況解不等式,即可得出該不等式的解集;(2)利用分析法可知,要證,即證,只需證明即可,因式分解后,判斷差值符號(hào)即可,由此證明出所證不等式成立.【詳解】(1).當(dāng)時(shí),由,解得,此時(shí);當(dāng)時(shí),不成立;當(dāng)時(shí),由,解得,此時(shí).綜上所述,不等式的解集為;(2)要證,即證,因?yàn)?,,所以,,?所以,.故所證不等式成立.【點(diǎn)睛】本題考查絕對(duì)值不等式的求解,同時(shí)也考查了利用分析法和作差法證明不等式,考查分類討論思想以及推理能力,屬于中等題.19、(1)或(2)最小值為.【解析】
(1)討論,,三種情況,分別計(jì)算得到答案.(2)計(jì)算得到,再利用均值不等式計(jì)算得到答案.【詳解】(1)當(dāng)時(shí),由,解得;當(dāng)時(shí),由,解得;當(dāng)時(shí),由,解得.所以所求不等式的解集為或.(2)根據(jù)函數(shù)圖像知:當(dāng)時(shí),,所以.因?yàn)?,由,可知,所以,?dāng)且僅當(dāng),,時(shí),等號(hào)成立.所以的最小值為.【點(diǎn)睛】本題考查了解絕對(duì)值不等式,函數(shù)最值,均值不等式,意在考查學(xué)生對(duì)于不等式,函數(shù)知識(shí)的綜合應(yīng)用.20、(1);(2)①證明見解析;②證明見解析【解析】
(1)解方程即可;(2)①設(shè)直線,,,將點(diǎn)的坐標(biāo)用表示,證明即可;②分別用表示,,的面積即可.【詳解】(1)解之得:的標(biāo)準(zhǔn)方程為:(2)①,,設(shè)直線代入橢圓方程:設(shè),,,直線,直線,,,,,.②,所以.【點(diǎn)睛】本題考查了直接法求橢圓的標(biāo)準(zhǔn)方程、直線與橢圓位置關(guān)系中的定值問題,在處理此類問題一般要涉及根與系數(shù)的關(guān)系,本題思路簡單,但計(jì)算量比較大,是一道有一定難
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 婚后財(cái)產(chǎn)獨(dú)立核算及2025年度財(cái)務(wù)規(guī)劃合同3篇
- 2025年度生物科技項(xiàng)目出資入股合同
- 2024年中國玻璃門磁夾市場調(diào)查研究報(bào)告
- 2025年度消防設(shè)備安裝與消防安全隱患排查合同3篇
- 2025年度城市綠化清工承包合同3篇
- 2024年中國氣囊整平機(jī)市場調(diào)查研究報(bào)告
- 2025年度民房建筑工程施工合同施工安全防護(hù)協(xié)議3篇
- 2024年中國標(biāo)志指示牌市場調(diào)查研究報(bào)告
- 2025年度智能沙場設(shè)備租賃合伙經(jīng)營合作協(xié)議范本3篇
- 2024年中國無電解鎳電鍍產(chǎn)品市場調(diào)查研究報(bào)告
- 英語-湖南省天一大聯(lián)考暨郴州市2025屆高考高三第二次教學(xué)質(zhì)量檢測(郴州二檢懷化統(tǒng)考)試題和答案
- 【MOOC期末】《形勢與政策》(北京科技大學(xué))期末慕課答案
- 營銷專業(yè)安全培訓(xùn)
- 2024年度五星級(jí)酒店廚師團(tuán)隊(duì)管理與服務(wù)合同3篇
- 2024年醫(yī)療健康知識(shí)科普視頻制作合同3篇
- 廣東省廣州市花都區(qū)2024年七年級(jí)上學(xué)期期末數(shù)學(xué)試題【附答案】
- 期末測試模擬練習(xí) (含答案) 江蘇省蘇州市2024-2025學(xué)年統(tǒng)編版語文七年級(jí)上冊(cè)
- 上海市徐匯區(qū)2024-2025學(xué)年高一語文下學(xué)期期末試題含解析
- 安全風(fēng)險(xiǎn)隱患舉報(bào)獎(jiǎng)勵(lì)制度
- 江蘇省蘇州市2023-2024學(xué)年高三上學(xué)期期末考試 數(shù)學(xué) 含答案
- 線性代數(shù)知到智慧樹章節(jié)測試課后答案2024年秋貴州理工學(xué)院
評(píng)論
0/150
提交評(píng)論