浙江省嵊州市崇仁中學(xué)2023-2024學(xué)年高三第二次調(diào)研數(shù)學(xué)試卷含解析_第1頁
浙江省嵊州市崇仁中學(xué)2023-2024學(xué)年高三第二次調(diào)研數(shù)學(xué)試卷含解析_第2頁
浙江省嵊州市崇仁中學(xué)2023-2024學(xué)年高三第二次調(diào)研數(shù)學(xué)試卷含解析_第3頁
浙江省嵊州市崇仁中學(xué)2023-2024學(xué)年高三第二次調(diào)研數(shù)學(xué)試卷含解析_第4頁
浙江省嵊州市崇仁中學(xué)2023-2024學(xué)年高三第二次調(diào)研數(shù)學(xué)試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

浙江省嵊州市崇仁中學(xué)2023-2024學(xué)年高三第二次調(diào)研數(shù)學(xué)試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.設(shè)復(fù)數(shù)滿足,在復(fù)平面內(nèi)對應(yīng)的點(diǎn)的坐標(biāo)為則()A. B.C. D.2.定義:表示不等式的解集中的整數(shù)解之和.若,,,則實(shí)數(shù)的取值范圍是A. B. C. D.3.已知函數(shù),若函數(shù)的圖象恒在軸的上方,則實(shí)數(shù)的取值范圍為()A. B. C. D.4.已知不等式組表示的平面區(qū)域的面積為9,若點(diǎn),則的最大值為()A.3 B.6 C.9 D.125.已知全集,函數(shù)的定義域?yàn)?,集合,則下列結(jié)論正確的是A. B.C. D.6.已知P是雙曲線漸近線上一點(diǎn),,是雙曲線的左、右焦點(diǎn),,記,PO,的斜率為,k,,若,-2k,成等差數(shù)列,則此雙曲線的離心率為()A. B. C. D.7.木匠師傅對一個(gè)圓錐形木件進(jìn)行加工后得到一個(gè)三視圖如圖所示的新木件,則該木件的體積()A. B. C. D.8.記等差數(shù)列的公差為,前項(xiàng)和為.若,,則()A. B. C. D.9.運(yùn)行如圖程序,則輸出的S的值為()A.0 B.1 C.2018 D.201710.要得到函數(shù)的圖像,只需把函數(shù)的圖像()A.向左平移個(gè)單位 B.向左平移個(gè)單位C.向右平移個(gè)單位 D.向右平移個(gè)單位11.運(yùn)行如圖所示的程序框圖,若輸出的的值為99,則判斷框中可以填()A. B. C. D.12.在平面直角坐標(biāo)系xOy中,已知橢圓的右焦點(diǎn)為,若F到直線的距離為,則E的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若的展開式中各項(xiàng)系數(shù)之和為32,則展開式中x的系數(shù)為_____14.已知函數(shù)有兩個(gè)極值點(diǎn)、,則的取值范圍為_________.15.圓心在曲線上的圓中,存在與直線相切且面積為的圓,則當(dāng)取最大值時(shí),該圓的標(biāo)準(zhǔn)方程為______.16.已知,,且,若恒成立,則實(shí)數(shù)的取值范圍是____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓的離心率為,且過點(diǎn).(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)點(diǎn)P是橢圓上異于短軸端點(diǎn)A,B的任意一點(diǎn),過點(diǎn)P作軸于Q,線段PQ的中點(diǎn)為M.直線AM與直線交于點(diǎn)N,D為線段BN的中點(diǎn),設(shè)O為坐標(biāo)原點(diǎn),試判斷以O(shè)D為直徑的圓與點(diǎn)M的位置關(guān)系.18.(12分)(選修4-4:坐標(biāo)系與參數(shù)方程)在平面直角坐標(biāo)系,已知曲線(為參數(shù)),在以原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立的極坐標(biāo)系中,直線的極坐標(biāo)方程為.(1)求曲線的普通方程和直線的直角坐標(biāo)方程;(2)過點(diǎn)且與直線平行的直線交于,兩點(diǎn),求點(diǎn)到,的距離之積.19.(12分)已知數(shù)列滿足,且,,成等比數(shù)列.(1)求證:數(shù)列是等差數(shù)列,并求數(shù)列的通項(xiàng)公式;(2)記數(shù)列的前n項(xiàng)和為,,求數(shù)列的前n項(xiàng)和.20.(12分)己知函數(shù).(1)當(dāng)時(shí),求證:;(2)若函數(shù),求證:函數(shù)存在極小值.21.(12分)在中,角所對的邊分別為,,的面積.(1)求角C;(2)求周長的取值范圍.22.(10分)為增強(qiáng)學(xué)生的法治觀念,營造“學(xué)憲法、知憲法、守憲法”的良好校園氛圍,某學(xué)校開展了“憲法小衛(wèi)士”活動(dòng),并組織全校學(xué)生進(jìn)行法律知識(shí)競賽.現(xiàn)從全校學(xué)生中隨機(jī)抽取50名學(xué)生,統(tǒng)計(jì)他們的競賽成績,已知這50名學(xué)生的競賽成績均在[50,100]內(nèi),并得到如下的頻數(shù)分布表:分?jǐn)?shù)段[50,60)[60,70)[70,80)[80,90)[90,100]人數(shù)51515123(1)將競賽成績在內(nèi)定義為“合格”,競賽成績在內(nèi)定義為“不合格”.請將下面的列聯(lián)表補(bǔ)充完整,并判斷是否有的把握認(rèn)為“法律知識(shí)競賽成績是否合格”與“是否是高一新生”有關(guān)?合格不合格合計(jì)高一新生12非高一新生6合計(jì)(2)在(1)的前提下,按“競賽成績合格與否”進(jìn)行分層抽樣,從這50名學(xué)生中抽取5名學(xué)生,再從這5名學(xué)生中隨機(jī)抽取2名學(xué)生,求這2名學(xué)生競賽成績都合格的概率.參考公式及數(shù)據(jù):,其中.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

根據(jù)共軛復(fù)數(shù)定義及復(fù)數(shù)模的求法,代入化簡即可求解.【詳解】在復(fù)平面內(nèi)對應(yīng)的點(diǎn)的坐標(biāo)為,則,,∵,代入可得,解得.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)對應(yīng)點(diǎn)坐標(biāo)的幾何意義,復(fù)數(shù)模的求法及共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.2、D【解析】

由題意得,表示不等式的解集中整數(shù)解之和為6.當(dāng)時(shí),數(shù)形結(jié)合(如圖)得的解集中的整數(shù)解有無數(shù)多個(gè),解集中的整數(shù)解之和一定大于6.當(dāng)時(shí),,數(shù)形結(jié)合(如圖),由解得.在內(nèi)有3個(gè)整數(shù)解,為1,2,3,滿足,所以符合題意.當(dāng)時(shí),作出函數(shù)和的圖象,如圖所示.若,即的整數(shù)解只有1,2,3.只需滿足,即,解得,所以.綜上,當(dāng)時(shí),實(shí)數(shù)的取值范圍是.故選D.3、B【解析】

函數(shù)的圖象恒在軸的上方,在上恒成立.即,即函數(shù)的圖象在直線上方,先求出兩者相切時(shí)的值,然后根據(jù)變化時(shí),函數(shù)的變化趨勢,從而得的范圍.【詳解】由題在上恒成立.即,的圖象永遠(yuǎn)在的上方,設(shè)與的切點(diǎn),則,解得,易知越小,圖象越靠上,所以.故選:B.【點(diǎn)睛】本題考查函數(shù)圖象與不等式恒成立的關(guān)系,考查轉(zhuǎn)化與化歸思想,首先函數(shù)圖象轉(zhuǎn)化為不等式恒成立,然后不等式恒成立再轉(zhuǎn)化為函數(shù)圖象,最后由極限位置直線與函數(shù)圖象相切得出參數(shù)的值,然后得出參數(shù)范圍.4、C【解析】

分析:先畫出滿足約束條件對應(yīng)的平面區(qū)域,利用平面區(qū)域的面積為9求出,然后分析平面區(qū)域多邊形的各個(gè)頂點(diǎn),即求出邊界線的交點(diǎn)坐標(biāo),代入目標(biāo)函數(shù)求得最大值.詳解:作出不等式組對應(yīng)的平面區(qū)域如圖所示:則,所以平面區(qū)域的面積,解得,此時(shí),由圖可得當(dāng)過點(diǎn)時(shí),取得最大值9,故選C.點(diǎn)睛:該題考查的是有關(guān)線性規(guī)劃的問題,在求解的過程中,首先需要正確畫出約束條件對應(yīng)的可行域,之后根據(jù)目標(biāo)函數(shù)的形式,判斷z的幾何意義,之后畫出一條直線,上下平移,判斷哪個(gè)點(diǎn)是最優(yōu)解,從而聯(lián)立方程組,求得最優(yōu)解的坐標(biāo),代入求值,要明確目標(biāo)函數(shù)的形式大體上有三種:斜率型、截距型、距離型;根據(jù)不同的形式,應(yīng)用相應(yīng)的方法求解.5、A【解析】

求函數(shù)定義域得集合M,N后,再判斷.【詳解】由題意,,∴.故選A.【點(diǎn)睛】本題考查集合的運(yùn)算,解題關(guān)鍵是確定集合中的元素.確定集合的元素時(shí)要注意代表元形式,集合是函數(shù)的定義域,還是函數(shù)的值域,是不等式的解集還是曲線上的點(diǎn)集,都由代表元決定.6、B【解析】

求得雙曲線的一條漸近線方程,設(shè)出的坐標(biāo),由題意求得,運(yùn)用直線的斜率公式可得,,,再由等差數(shù)列中項(xiàng)性質(zhì)和離心率公式,計(jì)算可得所求值.【詳解】設(shè)雙曲線的一條漸近線方程為,且,由,可得以為圓心,為半徑的圓與漸近線交于,可得,可取,則,設(shè),,則,,,由,,成等差數(shù)列,可得,化為,即,可得,故選:.【點(diǎn)睛】本題考查雙曲線的方程和性質(zhì),主要是漸近線方程和離心率,考查方程思想和運(yùn)算能力,意在考查學(xué)生對這些知識(shí)的理解掌握水平.7、C【解析】

由三視圖知幾何體是一個(gè)從圓錐中截出來的錐體,圓錐底面半徑為,圓錐的高,截去的底面劣弧的圓心角為,底面剩余部分的面積為,利用錐體的體積公式即可求得.【詳解】由已知中的三視圖知圓錐底面半徑為,圓錐的高,圓錐母線,截去的底面弧的圓心角為120°,底面剩余部分的面積為,故幾何體的體積為:.故選C.【點(diǎn)睛】本題考查了三視圖還原幾何體及體積求解問題,考查了學(xué)生空間想象,數(shù)學(xué)運(yùn)算能力,難度一般.8、C【解析】

由,和,可求得,從而求得和,再驗(yàn)證選項(xiàng).【詳解】因?yàn)椋?,所以解得,所以,所以,,,故選:C.【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式、前項(xiàng)和公式,還考查運(yùn)算求解能力,屬于中檔題.9、D【解析】

依次運(yùn)行程序框圖給出的程序可得第一次:,不滿足條件;第二次:,不滿足條件;第三次:,不滿足條件;第四次:,不滿足條件;第五次:,不滿足條件;第六次:,滿足條件,退出循環(huán).輸出1.選D.10、A【解析】

運(yùn)用輔助角公式將兩個(gè)函數(shù)公式進(jìn)行變形得以及,按四個(gè)選項(xiàng)分別對變形,整理后與對比,從而可選出正確答案.【詳解】解:.對于A:可得.故選:A.【點(diǎn)睛】本題考查了三角函數(shù)圖像平移變換,考查了輔助角公式.本題的易錯(cuò)點(diǎn)有兩個(gè),一個(gè)是混淆了已知函數(shù)和目標(biāo)函數(shù);二是在平移時(shí),忘記乘了自變量前的系數(shù).11、C【解析】

模擬執(zhí)行程序框圖,即可容易求得結(jié)果.【詳解】運(yùn)行該程序:第一次,,;第二次,,;第三次,,,…;第九十八次,,;第九十九次,,,此時(shí)要輸出的值為99.此時(shí).故選:C.【點(diǎn)睛】本題考查算法與程序框圖,考查推理論證能力以及化歸轉(zhuǎn)化思想,涉及判斷條件的選擇,屬基礎(chǔ)題.12、A【解析】

由已知可得到直線的傾斜角為,有,再利用即可解決.【詳解】由F到直線的距離為,得直線的傾斜角為,所以,即,解得.故選:A.【點(diǎn)睛】本題考查橢圓離心率的問題,一般求橢圓離心率的問題時(shí),通常是構(gòu)造關(guān)于的方程或不等式,本題是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、2025【解析】

利用賦值法,結(jié)合展開式中各項(xiàng)系數(shù)之和列方程,由此求得的值.再利用二項(xiàng)式展開式的通項(xiàng)公式,求得展開式中的系數(shù).【詳解】依題意,令,解得,所以,則二項(xiàng)式的展開式的通項(xiàng)為:令,得,所以的系數(shù)為.故答案為:2025【點(diǎn)睛】本小題主要考查二項(xiàng)式展開式各項(xiàng)系數(shù)之和,考查二項(xiàng)式展開式指定項(xiàng)系數(shù)的求法,屬于基礎(chǔ)題.14、【解析】

確定函數(shù)的定義域,求導(dǎo)函數(shù),利用極值的定義,建立方程,結(jié)合韋達(dá)定理,即可求的取值范圍.【詳解】函數(shù)的定義域?yàn)?,,依題意,方程有兩個(gè)不等的正根、(其中),則,由韋達(dá)定理得,,所以,令,則,,當(dāng)時(shí),,則函數(shù)在上單調(diào)遞減,則,所以,函數(shù)在上單調(diào)遞減,所以,.因此,的取值范圍是.故答案為:.【點(diǎn)睛】本題考查了函數(shù)極值點(diǎn)問題,考查了函數(shù)的單調(diào)性、最值,將的取值范圍轉(zhuǎn)化為以為自變量的函數(shù)的值域問題是解答的關(guān)鍵,考查計(jì)算能力,屬于中等題.15、【解析】

由題意可得圓的面積求出圓的半徑,由圓心在曲線上,設(shè)圓的圓心坐標(biāo),到直線的距離等于半徑,再由均值不等式可得的最大值時(shí)圓心的坐標(biāo),進(jìn)而求出圓的標(biāo)準(zhǔn)方程.【詳解】設(shè)圓的半徑為,由題意可得,所以,由題意設(shè)圓心,由題意可得,由直線與圓相切可得,所以,而,,所以,即,解得,所以的最大值為2,當(dāng)且僅當(dāng)時(shí)取等號(hào),可得,所以圓心坐標(biāo)為:,半徑為,所以圓的標(biāo)準(zhǔn)方程為:.故答案為:.【點(diǎn)睛】本題考查直線與圓的位置關(guān)系及均值不等式的應(yīng)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力、運(yùn)算求解能力,求解時(shí)注意驗(yàn)正等號(hào)成立的條件.16、(-4,2)【解析】試題分析:因?yàn)楫?dāng)且僅當(dāng)時(shí)取等號(hào),所以考點(diǎn):基本不等式求最值三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)點(diǎn)在以為直徑的圓上【解析】

(1)根據(jù)題意列出關(guān)于,,的方程組,解出,,的值,即可得到橢圓的標(biāo)準(zhǔn)方程;(2)設(shè)點(diǎn),,則,,求出直線的方程,進(jìn)而求出點(diǎn)的坐標(biāo),再利用中點(diǎn)坐標(biāo)公式得到點(diǎn)的坐標(biāo),下面結(jié)合點(diǎn)在橢圓上證出,所以點(diǎn)在以為直徑的圓上.【詳解】(1)由題意可知,,解得,橢圓的標(biāo)準(zhǔn)方程為:.(2)設(shè)點(diǎn),,則,,直線的斜率為,直線的方程為:,令得,,點(diǎn)的坐標(biāo)為,,點(diǎn)的坐標(biāo)為,,,,又點(diǎn),在橢圓上,,,,點(diǎn)在以為直徑的圓上.【點(diǎn)睛】本題主要考查了橢圓方程,考查了中點(diǎn)坐標(biāo)公式,以及平面向量的基本知識(shí),屬于中檔題.18、(1)曲線:,直線的直角坐標(biāo)方程;(2)1.【解析】試題分析:(1)先根據(jù)三角函數(shù)平方關(guān)系消參數(shù)得曲線化為普通方程,再根據(jù)將直線的極坐標(biāo)方程化為直角坐標(biāo)方程;(2)根據(jù)題意設(shè)直線參數(shù)方程,代入C方程,利用參數(shù)幾何意義以及韋達(dá)定理得點(diǎn)到,的距離之積試題解析:(1)曲線化為普通方程為:,由,得,所以直線的直角坐標(biāo)方程為.(2)直線的參數(shù)方程為(為參數(shù)),代入化簡得:,設(shè)兩點(diǎn)所對應(yīng)的參數(shù)分別為,則,.19、(1)見解析;(2)【解析】

(1)因?yàn)?,所以,所以,所以?shù)列是等差數(shù)列,設(shè)數(shù)列的公差為,由可得,因?yàn)槌傻缺葦?shù)列,所以,所以,所以,因?yàn)椋?,解得(舍去)或,所以,所以.?)由(1)知,,所以,所以.20、(1)證明見解析(2)證明見解析【解析】

(1)求導(dǎo)得,由,且,得到,再利用函數(shù)在上單調(diào)遞減論證.(2)根據(jù)題意,求導(dǎo),令,易知;,易知當(dāng)時(shí),,;當(dāng)時(shí),函數(shù)單調(diào)遞增,而,又,由零點(diǎn)存在定理得,使得,,使得,有從而得證.【詳解】(1)依題意,,因?yàn)椋?,故,故函?shù)在上單調(diào)遞減,故.(2)依題意,,令,則;而,可知當(dāng)時(shí),,故函數(shù)在上單調(diào)遞增,故當(dāng)時(shí),;當(dāng)時(shí),函數(shù)單調(diào)遞增,而,又,故,使得,故,使得,即函數(shù)單調(diào)遞增,即單調(diào)遞增;故當(dāng)時(shí),,故函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,故當(dāng)時(shí),函數(shù)有極小值.【點(diǎn)睛】本題考查利用導(dǎo)數(shù)研究函數(shù)的性質(zhì),還考查推理論證能力以及函數(shù)與方程思想,屬于難題.21、(Ⅰ)(Ⅱ)【解析】

(Ⅰ)由可得到,代入,結(jié)合正弦定理可得到,再利用余弦定理可求出的值,即可求出角;(Ⅱ)由,并結(jié)合正弦定理可得到,利用,,可得到,進(jìn)而可求出周長的范圍.【詳解】解:(Ⅰ)由可知,∴.由正弦定理得.由余弦定理得,∴.(Ⅱ)由(Ⅰ)知,∴,.的周長為.∵,∴,∴,∴的周

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論