數(shù)學(xué)八年級下冊期末考試總復(fù)習(xí)提綱_第1頁
數(shù)學(xué)八年級下冊期末考試總復(fù)習(xí)提綱_第2頁
數(shù)學(xué)八年級下冊期末考試總復(fù)習(xí)提綱_第3頁
數(shù)學(xué)八年級下冊期末考試總復(fù)習(xí)提綱_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

數(shù)學(xué)八年級下冊期末考試總復(fù)習(xí)提綱步入初中,隨著知識點的增多,越來越多的初中生表示數(shù)學(xué)很難,其實你要學(xué)會做復(fù)習(xí)提綱,以下是小編給大家整理的數(shù)學(xué)八年級下冊復(fù)習(xí)提綱,希望對大家有所幫助,歡迎閱讀

數(shù)學(xué)八年級下冊復(fù)習(xí)提綱

二次根式的乘除

1.積的算數(shù)平方根的性質(zhì)

列如:√ab=√a?√b(a≥0,b≥0)

2.乘法法則

列如:√a?√b=√ab(a≥0,b≥0)

二次根式的乘法運算法則,用語言敘述為:兩個因式的算術(shù)平方根的積,等于這兩個因式積的算術(shù)平方根。

3.除法法則

√a÷√b=√a÷b(a≥0,b>0)

二次根式的除法運算法則,用語言敘述為:兩個數(shù)的算術(shù)平方根的商,等于這兩個數(shù)商的算術(shù)平方根。

4.有理化根式。

如果兩個含有根式的代數(shù)式的積不再含有根式,那么這兩個代數(shù)式叫做有理化根式,也稱有理化因式。

二次根式

I.二次根式的定義和概念

1、定義:一般地,形如√ā(a≥0)的代數(shù)式叫做二次根式。當(dāng)a>0時,√a表示a的算數(shù)平方根,√0=0

2、概念:式子√ā(a≥0)叫二次根式?!台?a≥0)是一個非負數(shù)。

II.二次根式√ā的簡單性質(zhì)和幾何意義

1)a≥0;√ā≥0[雙重非負性]

2)(√ā)^2=a(a≥0)[任何一個非負數(shù)都可以寫成一個數(shù)的平方的形式]

3)√(a^2+b^2)表示平面間兩點之間的距離,即勾股定理推論。

III.二次根式的性質(zhì)和最簡二次根式

1)二次根式√ā的化簡

a(a≥0)

√ā=|a|={

-a(a<0)

2)積的平方根與商的平方根

√ab=√a?√b(a≥0,b≥0)

√a/b=√a/√b(a≥0,b>0)

3)最簡二次根式

條件:

(1)被開方數(shù)的因數(shù)是整數(shù)或字母,因式是整式;

(2)被開方數(shù)中不含有可化為平方數(shù)或平方式的因數(shù)或因式。

如:不含有可化為平方數(shù)或平方式的因數(shù)或因式的有√2、√3、√a(a≥0)、√x+y等;

含有可化為平方數(shù)或平方式的因數(shù)或因式的有√4、√9、√a^2、√(x+y)^2、√x^2+2xy+y^2等

分式的乘除法

1.把一個分式的分子與分母的公因式約去,叫做分式的約分.

2.分式進行約分的目的是要把這個分式化為最簡分式

3.如果分式的分子或分母是多項式,可先考慮把它分別分解因式,得到因式乘積形式,再約去分子與分母的公因式.如果分子或分母中的多項式不能分解因式,此時就不能把分子、分母中的某些項單獨約分.

4.分式約分中注意正確運用乘方的符號法則

如:x-y=-(y-x),(x-y)2=(y-x)2,(x-y)3=-(y-x)3.

5.分式的分子或分母帶符號的n次方,可按分式符號法則,變成整個分式的符號,然后再按-1的偶次方為正、奇次方為負來處理.當(dāng)然,簡單的分式之分子分母可直接乘方.

6.注意混合運算中應(yīng)先算括號,再算乘方,然后乘除,最后算加減.

數(shù)學(xué)學(xué)習(xí)技巧

一、主動預(yù)習(xí)

預(yù)習(xí)的目的是主動獲取新知識的過程,有助于調(diào)動學(xué)習(xí)積極主動性,新知識在未講解之前,認真閱讀教材,養(yǎng)成主動預(yù)習(xí)的習(xí)慣,是獲得數(shù)學(xué)知識的重要手段。

因此,要注意培養(yǎng)自學(xué)能力,學(xué)會看書。如自學(xué)例題時,要弄清例題講的什么內(nèi)容,告訴了哪些條件,求什么,書上怎么解答的,為什么要這樣解答,還有沒有新的解法,解題步驟是怎樣的。

抓住這些重要問題,動腦思考,步步深入,學(xué)會運用已有的知識去獨立探究新的知識。

二、主動思考

很多同學(xué)在聽課的過程中,只是簡簡單單的聽,不能主動思考,這樣遇到實際問題時,會無從下手,不知如何應(yīng)用所學(xué)的知識去解答問題。

主要原因還是聽課過程中不思考惹的禍。除了我們跟著老師的思路走,還要多想想為什么要這么定義,這樣解題的好處是什么,這樣主動去想,不僅能讓我們更加認真的聽課,也能激發(fā)對某些知識的興趣,更有助于學(xué)習(xí)。

靠著老師的引導(dǎo),去思考解題的思路;答案真的不重要;重要的是方法數(shù)學(xué)學(xué)習(xí)方法

1、課前認真預(yù)習(xí).預(yù)習(xí)的目的是為了能更好得聽老師講課,通過預(yù)習(xí),掌握度要達到百分之八十.帶著預(yù)習(xí)中不明白的問題去聽老師講課,來解答這類的問題.預(yù)習(xí)還可以使聽課的整體效率提高.具體的預(yù)習(xí)方法:將書上的題目做完,畫出,整個過程大約持續(xù)15-20分鐘.在時間允許的情況下,還可以將練習(xí)冊做完.

2、讓數(shù)學(xué)課學(xué)與練結(jié)合.在數(shù)學(xué)課上,光聽是沒用的.當(dāng)老師讓同學(xué)去黑板上演算時,自己也要在草稿紙上練.如果遇到不懂的難題,一定要提出來,不能不求甚解.否則考試遇到類似的題目就可能不會做.聽老師講課時一定要全神貫注,要注意細節(jié)問題,否則“千里之堤,毀于蟻穴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論