




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆遼寧省遼油二高高三第六次模擬考試數(shù)學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.如圖,在棱長為4的正方體中,E,F(xiàn),G分別為棱AB,BC,的中點,M為棱AD的中點,設(shè)P,Q為底面ABCD內(nèi)的兩個動點,滿足平面EFG,,則的最小值為()A. B. C. D.2.下列圖形中,不是三棱柱展開圖的是()A. B. C. D.3.過拋物線的焦點F作兩條互相垂直的弦AB,CD,設(shè)P為拋物線上的一動點,,若,則的最小值是()A.1 B.2 C.3 D.44.函數(shù)圖象的大致形狀是()A. B.C. D.5.已知圓:,圓:,點、分別是圓、圓上的動點,為軸上的動點,則的最大值是()A. B.9 C.7 D.6.若向量,則()A.30 B.31 C.32 D.337.已知隨機變量滿足,,.若,則()A., B.,C., D.,8.已知,,,則,,的大小關(guān)系為()A. B. C. D.9.定義運算,則函數(shù)的圖象是().A. B.C. D.10.已知拋物線:,直線與分別相交于點,與的準線相交于點,若,則()A.3 B. C. D.11.據(jù)國家統(tǒng)計局發(fā)布的數(shù)據(jù),2019年11月全國CPI(居民消費價格指數(shù)),同比上漲4.5%,CPI上漲的主要因素是豬肉價格的上漲,豬肉加上其他畜肉影響CPI上漲3.27個百分點.下圖是2019年11月CPI一籃子商品權(quán)重,根據(jù)該圖,下列結(jié)論錯誤的是()A.CPI一籃子商品中所占權(quán)重最大的是居住B.CPI一籃子商品中吃穿住所占權(quán)重超過50%C.豬肉在CPI一籃子商品中所占權(quán)重約為2.5%D.豬肉與其他畜肉在CPI一籃子商品中所占權(quán)重約為0.18%12.已知雙曲線的一條漸近線方程是,則雙曲線的離心率為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知集合,其中,.且,則集合中所有元素的和為_________.14.已知等差數(shù)列的前項和為,且,則______.15.如圖,半圓的直徑AB=6,O為圓心,C為半圓上不同于A、B的任意一點,若P為半徑OC上的動點,則的最小值為.16.的展開式中的系數(shù)為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)求不等式的解集;(2)若不等式對恒成立,求實數(shù)的取值范圍.18.(12分)如圖,三棱錐中,點,分別為,的中點,且平面平面.求證:平面;若,,求證:平面平面.19.(12分)已知函數(shù),.(1)討論的單調(diào)性;(2)若存在兩個極值點,,證明:.20.(12分)已知函數(shù).(1)若,解關(guān)于的不等式;(2)若當時,恒成立,求實數(shù)的取值范圍.21.(12分)已知橢圓的焦點為,,離心率為,點P為橢圓C上一動點,且的面積最大值為,O為坐標原點.(1)求橢圓C的方程;(2)設(shè)點,為橢圓C上的兩個動點,當為多少時,點O到直線MN的距離為定值.22.(10分)如圖,在四棱錐中,,,.(1)證明:平面;(2)若,,為線段上一點,且,求直線與平面所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
把截面畫完整,可得在上,由知在以為圓心1為半徑的四分之一圓上,利用對稱性可得的最小值.【詳解】如圖,分別取的中點,連接,易證共面,即平面為截面,連接,由中位線定理可得,平面,平面,則平面,同理可得平面,由可得平面平面,又平面EFG,在平面上,∴.正方體中平面,從而有,∴,∴在以為圓心1為半徑的四分之一圓(圓在正方形內(nèi)的部分)上,顯然關(guān)于直線的對稱點為,,當且僅當共線時取等號,∴所求最小值為.故選:C.【點睛】本題考查空間距離的最小值問題,解題時作出正方體的完整截面求出點軌跡是第一個難點,第二個難點是求出點軌跡,第三個難點是利用對稱性及圓的性質(zhì)求得最小值.2、C【解析】
根據(jù)三棱柱的展開圖的可能情況選出選項.【詳解】由圖可知,ABD選項可以圍成三棱柱,C選項不是三棱柱展開圖.故選:C【點睛】本小題主要考查三棱柱展開圖的判斷,屬于基礎(chǔ)題.3、C【解析】
設(shè)直線AB的方程為,代入得:,由根與系數(shù)的關(guān)系得,,從而得到,同理可得,再利用求得的值,當Q,P,M三點共線時,即可得答案.【詳解】根據(jù)題意,可知拋物線的焦點為,則直線AB的斜率存在且不為0,設(shè)直線AB的方程為,代入得:.由根與系數(shù)的關(guān)系得,,所以.又直線CD的方程為,同理,所以,所以.故.過點P作PM垂直于準線,M為垂足,則由拋物線的定義可得.所以,當Q,P,M三點共線時,等號成立.故選:C.【點睛】本題考查直線與拋物線的位置關(guān)系、焦半徑公式的應(yīng)用,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意取最值的條件.4、B【解析】
判斷函數(shù)的奇偶性,可排除A、C,再判斷函數(shù)在區(qū)間上函數(shù)值與的大小,即可得出答案.【詳解】解:因為,所以,所以函數(shù)是奇函數(shù),可排除A、C;又當,,可排除D;故選:B.【點睛】本題考查函數(shù)表達式判斷函數(shù)圖像,屬于中檔題.5、B【解析】試題分析:圓的圓心,半徑為,圓的圓心,半徑是.要使最大,需最大,且最小,最大值為的最小值為,故最大值是;關(guān)于軸的對稱點,,故的最大值為,故選B.考點:圓與圓的位置關(guān)系及其判定.【思路點睛】先根據(jù)兩圓的方程求出圓心和半徑,要使最大,需最大,且最小,最大值為的最小值為,故最大值是,再利用對稱性,求出所求式子的最大值.6、C【解析】
先求出,再與相乘即可求出答案.【詳解】因為,所以.故選:C.【點睛】本題考查了平面向量的坐標運算,考查了學生的計算能力,屬于基礎(chǔ)題.7、B【解析】
根據(jù)二項分布的性質(zhì)可得:,再根據(jù)和二次函數(shù)的性質(zhì)求解.【詳解】因為隨機變量滿足,,.所以服從二項分布,由二項分布的性質(zhì)可得:,因為,所以,由二次函數(shù)的性質(zhì)可得:,在上單調(diào)遞減,所以.故選:B【點睛】本題主要考查二項分布的性質(zhì)及二次函數(shù)的性質(zhì)的應(yīng)用,還考查了理解辨析的能力,屬于中檔題.8、D【解析】
構(gòu)造函數(shù),利用導數(shù)求得的單調(diào)區(qū)間,由此判斷出的大小關(guān)系.【詳解】依題意,得,,.令,所以.所以函數(shù)在上單調(diào)遞增,在上單調(diào)遞減.所以,且,即,所以.故選:D.【點睛】本小題主要考查利用導數(shù)求函數(shù)的單調(diào)區(qū)間,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,考查對數(shù)式比較大小,屬于中檔題.9、A【解析】
由已知新運算的意義就是取得中的最小值,因此函數(shù),只有選項中的圖象符合要求,故選A.10、C【解析】
根據(jù)拋物線的定義以及三角形的中位線,斜率的定義表示即可求得答案.【詳解】顯然直線過拋物線的焦點如圖,過A,M作準線的垂直,垂足分別為C,D,過M作AC的垂線,垂足為E根據(jù)拋物線的定義可知MD=MF,AC=AF,又AM=MN,所以M為AN的中點,所以MD為三角形NAC的中位線,故MD=CE=EA=AC設(shè)MF=t,則MD=t,AF=AC=2t,所以AM=3t,在直角三角形AEM中,ME=所以故選:C【點睛】本題考查求拋物線的焦點弦的斜率,常見于利用拋物線的定義構(gòu)建關(guān)系,屬于中檔題.11、D【解析】
A.從第一個圖觀察居住占23%,與其他比較即可.B.CPI一籃子商品中吃穿住所占23%+8%+19.9%=50.9%,再判斷.C.食品占19.9%,再看第二個圖,分清2.5%是在CPI一籃子商品中,還是在食品中即可.D.易知豬肉與其他畜肉在CPI一籃子商品中所占權(quán)重約為2.1%+2.5%=4.6%.【詳解】A.CPI一籃子商品中居住占23%,所占權(quán)重最大的,故正確.B.CPI一籃子商品中吃穿住所占23%+8%+19.9%=50.9%,權(quán)重超過50%,故正確.C.食品占中19.9%,分解后后可知豬肉是占在CPI一籃子商品中所占權(quán)重約為2.5%,故正確.D.豬肉與其他畜肉在CPI一籃子商品中所占權(quán)重約為2.1%+2.5%=4.6%,故錯誤.故選:D【點睛】本題主要考查統(tǒng)計圖的識別與應(yīng)用,還考查了理解辨析的能力,屬于基礎(chǔ)題.12、D【解析】雙曲線的漸近線方程是,所以,即,,即,,故選D.二、填空題:本題共4小題,每小題5分,共20分。13、2889【解析】
先計算集合中最小的數(shù)為,最大的數(shù),可得,求和即得解.【詳解】當時,集合中最小數(shù);當時,得到集合中最大的數(shù);故答案為:2889【點睛】本題考查了數(shù)列與集合綜合,考查了學生綜合分析,轉(zhuǎn)化劃歸,數(shù)學運算的能力,屬于中檔題.14、【解析】
根據(jù)等差數(shù)列的性質(zhì)求得,結(jié)合等差數(shù)列前項和公式求得的值.【詳解】因為為等差數(shù)列,所以,解得,所以.故答案為:【點睛】本小題考查等差數(shù)列的性質(zhì),前項和公式的應(yīng)用等基礎(chǔ)知識;考查運算求解能力,應(yīng)用意識.15、.【解析】.16、3【解析】
分別用1和進行分類討論即可【詳解】當?shù)谝粋€因式取1時,第二個因式應(yīng)取含的項,則對應(yīng)系數(shù)為:;當?shù)谝粋€因式取時,第二個因式應(yīng)取含的項,則對應(yīng)系數(shù)為:;故的展開式中的系數(shù)為.故答案為:3【點睛】本題考查二項式定理中具體項對應(yīng)系數(shù)的求解,屬于基礎(chǔ)題三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)按絕對值的定義分類討論去絕對值符號后解不等式;(2)不等式轉(zhuǎn)化為,求出在上的最小值即可,利用絕對值定義分類討論去絕對值符號后可求得函數(shù)最小值.【詳解】解:(1)或或解得或或無解綜上不等式的解集為.(2)時,,即所以只需在時恒成立即可令,由解析式得在上是增函數(shù),∴當時,即【點睛】本題考查解絕對值不等式,考查不等式恒成立問題,解決絕對值不等式的問題,分類討論是常用方法.掌握分類討論思想是解題關(guān)鍵.18、證明見解析;證明見解析.【解析】
利用線面平行的判定定理求證即可;為中點,為中點,可得,,,可知,故為直角三角形,,利用面面垂直的判定定理求證即可.【詳解】解:證明:為中點,為中點,,又平面,平面,平面;證明:為中點,為中點,,又,,則,故為直角三角形,,平面平面,平面平面,,平面,平面,又∵平面,平面平面.【點睛】本題考查線面平行和面面垂直的判定定理的應(yīng)用,屬于基礎(chǔ)題.19、(1)見解析;(2)見解析【解析】
(1)求得的導函數(shù),對分成兩種情況,討論的單調(diào)性.(2)由(1)判斷出的取值范圍,根據(jù)韋達定理求得的關(guān)系式,利用差比較法,計算,通過構(gòu)造函數(shù),利用導數(shù)證得,由此證得,進而證得不等式成立.【詳解】(1).當時,,此時在上單調(diào)遞減;當時,由解得或,∵是增函數(shù),∴此時在和單調(diào)遞減,在單調(diào)遞增.(2)由(1)知.,,,不妨設(shè),∴,,令,∴,∴在上是減函數(shù),,∴,即.【點睛】本小題主要考查利用導數(shù)研究函數(shù)的單調(diào)區(qū)間,考查利用導數(shù)證明不等式,考查分類討論的數(shù)學思想方法,考查化歸與轉(zhuǎn)化的數(shù)學思想方法,屬于中檔題.20、(1)(2)【解析】
(1)利用零點分段法將表示為分段函數(shù)的形式,由此求得不等式的解集.(2)對分成三種情況,求得的最小值,由此求得的取值范圍.【詳解】(1)當時,,由此可知,的解集為(2)當時,的最小值為和中的最小值,其中,.所以恒成立.當時,,且,不恒成立,不符合題意.當時,,若,則,故不恒成立,不符合題意;若,則,故不恒成立,不符合題意.綜上,.【點睛】本小題主要考查絕對值不等式的解法,考查根據(jù)絕對值不等式恒成立求參數(shù)的取值范圍,考查分類討論的數(shù)學思想方法,屬于中檔題.21、(1);(2)當=0時,點O到直線MN的距離為定值.【解析】
(1)的面積最大時,是短軸端點,由此可得,再由離心率及可得,從而得橢圓方程;(2)在直線斜率存在時,設(shè)其方程為,現(xiàn)橢圓方程聯(lián)立消元()后應(yīng)用韋達定理得,注意,一是計算,二是計算原點到直線的距離,兩者比較可得結(jié)論.【詳解】(1)因為在橢圓上,當是短軸端點時,到軸距離最大,此時面積最大,所以,由,解得,所以橢圓方程為.(2)在時,設(shè)直線方程為,原點到此直線的距離為,即,由,得,,,所以,,,所以當時,,,為常數(shù).若,則,,,,,綜上所述,當=0時,點O到直線MN的距離為定值.【點睛】本題考查求橢圓方程與橢圓的幾何性質(zhì),考查直線與橢圓的位置關(guān)系,考查運算求解能力.解題方法是“設(shè)而不求”法.在直線與圓錐曲線相交時常用此法通過韋達定理聯(lián)系已知式與待求式.22、(1)證明見解析(2)【解析】
(1)利用線
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025-2030中國花卉市場銷售規(guī)模及營銷策略分析研究報告
- 2025-2030中國背帶褲行業(yè)市場深度調(diào)研及前景趨勢與投資研究報告
- 2025-2030中國瑤柱行業(yè)發(fā)展分析及前景趨勢與投資風險研究報告
- 2025-2030中國物料搬運設(shè)備行業(yè)行情監(jiān)測及發(fā)展趨勢前景調(diào)研研究報告
- 2025-2030中國實木板行業(yè)發(fā)展分析及發(fā)展前景與投資研究報告
- 2025-2030中國變形玩具行業(yè)發(fā)展分析及投資風險與戰(zhàn)略研究報告
- 建筑水電施工方案協(xié)議
- 生鮮電商代理協(xié)議
- 股權(quán)質(zhì)押合同的適用情形
- 清涼一夏臨時工合同
- 菏澤學院無機化學(專升本)復習題
- 虛實互動:人機協(xié)同探秘知到智慧樹章節(jié)答案
- 員工違紀扣款細則
- 2024年度融資合同:科技公司與投資公司之間的融資協(xié)議
- 2023年云上貴州大數(shù)據(jù)有限公司社會招聘筆試真題
- 國家安全教育大學生第十章-爭做總體國家安全觀堅定踐行者
- 工業(yè)自動化設(shè)備安裝調(diào)試方案
- 2024年四川省公務(wù)員考試《行測》真題及答案解析
- 改性磷石膏施工方案
- 小學項目式學習培訓
- 2024年教師資格考試初級中學面試音樂試題與參考答案
評論
0/150
提交評論