版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2023-2024學(xué)年福建省泉州市德化一中高三二診模擬考試數(shù)學(xué)試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時(shí),選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動(dòng),用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動(dòng),先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.等比數(shù)列若則()A.±6 B.6 C.-6 D.2.某三棱錐的三視圖如圖所示,則該三棱錐的體積為A. B. C.2 D.3.若復(fù)數(shù)()是純虛數(shù),則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.關(guān)于函數(shù),有下述三個(gè)結(jié)論:①函數(shù)的一個(gè)周期為;②函數(shù)在上單調(diào)遞增;③函數(shù)的值域?yàn)?其中所有正確結(jié)論的編號是()A.①② B.② C.②③ D.③5.過拋物線的焦點(diǎn)作直線與拋物線在第一象限交于點(diǎn)A,與準(zhǔn)線在第三象限交于點(diǎn)B,過點(diǎn)作準(zhǔn)線的垂線,垂足為.若,則()A. B. C. D.6.直線l過拋物線的焦點(diǎn)且與拋物線交于A,B兩點(diǎn),則的最小值是A.10 B.9 C.8 D.77.在正方體中,E是棱的中點(diǎn),F(xiàn)是側(cè)面內(nèi)的動(dòng)點(diǎn),且與平面的垂線垂直,如圖所示,下列說法不正確的是()A.點(diǎn)F的軌跡是一條線段 B.與BE是異面直線C.與不可能平行 D.三棱錐的體積為定值8.若復(fù)數(shù)滿足,則對應(yīng)的點(diǎn)位于復(fù)平面的()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.已知復(fù)數(shù)z=2i1-i,則A.第一象限 B.第二象限 C.第三象限 D.第四象限10.等腰直角三角形BCD與等邊三角形ABD中,,,現(xiàn)將沿BD折起,則當(dāng)直線AD與平面BCD所成角為時(shí),直線AC與平面ABD所成角的正弦值為()A. B. C. D.11.設(shè)等比數(shù)列的前項(xiàng)和為,若,則的值為()A. B. C. D.12.已知拋物線上一點(diǎn)的縱坐標(biāo)為4,則點(diǎn)到拋物線焦點(diǎn)的距離為()A.2 B.3 C.4 D.5二、填空題:本題共4小題,每小題5分,共20分。13.已知,滿足約束條件,則的最小值為______.14.若,則______.15.設(shè)(其中為自然對數(shù)的底數(shù)),,若函數(shù)恰有4個(gè)不同的零點(diǎn),則實(shí)數(shù)的取值范圍為________.16.已知函數(shù),若,則實(shí)數(shù)的取值范圍為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)當(dāng)時(shí),判斷是否是函數(shù)的極值點(diǎn),并說明理由;(2)當(dāng)時(shí),不等式恒成立,求整數(shù)的最小值.18.(12分)如圖,為坐標(biāo)原點(diǎn),點(diǎn)為拋物線的焦點(diǎn),且拋物線上點(diǎn)處的切線與圓相切于點(diǎn)(1)當(dāng)直線的方程為時(shí),求拋物線的方程;(2)當(dāng)正數(shù)變化時(shí),記分別為的面積,求的最小值.19.(12分)2019年是中華人民共和國成立70周年.為了讓人民了解建國70周年的風(fēng)雨歷程,某地的民調(diào)機(jī)構(gòu)隨機(jī)選取了該地的100名市民進(jìn)行調(diào)查,將他們的年齡分成6段:,,…,,并繪制了如圖所示的頻率分布直方圖.(1)現(xiàn)從年齡在,,內(nèi)的人員中按分層抽樣的方法抽取8人,再從這8人中隨機(jī)選取3人進(jìn)行座談,用表示年齡在)內(nèi)的人數(shù),求的分布列和數(shù)學(xué)期望;(2)若用樣本的頻率代替概率,用隨機(jī)抽樣的方法從該地抽取20名市民進(jìn)行調(diào)查,其中有名市民的年齡在的概率為.當(dāng)最大時(shí),求的值.20.(12分)這次新冠肺炎疫情,是新中國成立以來在我國發(fā)生的傳播速度最快、感染范圍最廣、防控難度最大的一次重大突發(fā)公共衛(wèi)生事件.中華民族歷史上經(jīng)歷過很多磨難,但從來沒有被壓垮過,而是愈挫愈勇,不斷在磨難中成長,從磨難中奮起.在這次疫情中,全國人民展現(xiàn)出既有責(zé)任擔(dān)當(dāng)之勇、又有科學(xué)防控之智.某校高三學(xué)生也展開了對這次疫情的研究,一名同學(xué)在數(shù)據(jù)統(tǒng)計(jì)中發(fā)現(xiàn),從2020年2月1日至2月7日期間,日期和全國累計(jì)報(bào)告確診病例數(shù)量(單位:萬人)之間的關(guān)系如下表:日期1234567全國累計(jì)報(bào)告確診病例數(shù)量(萬人)1.41.72.02.42.83.13.5(1)根據(jù)表中的數(shù)據(jù),運(yùn)用相關(guān)系數(shù)進(jìn)行分析說明,是否可以用線性回歸模型擬合與的關(guān)系?(2)求出關(guān)于的線性回歸方程(系數(shù)精確到0.01).并預(yù)測2月10日全國累計(jì)報(bào)告確診病例數(shù).參考數(shù)據(jù):,,,.參考公式:相關(guān)系數(shù)回歸方程中斜率和截距的最小二乘估計(jì)公式分別為:,.21.(12分)如圖為某大江的一段支流,岸線與近似滿足∥,寬度為.圓為江中的一個(gè)半徑為的小島,小鎮(zhèn)位于岸線上,且滿足岸線,.現(xiàn)計(jì)劃建造一條自小鎮(zhèn)經(jīng)小島至對岸的水上通道(圖中粗線部分折線段,在右側(cè)),為保護(hù)小島,段設(shè)計(jì)成與圓相切.設(shè).(1)試將通道的長表示成的函數(shù),并指出定義域;(2)若建造通道的費(fèi)用是每公里100萬元,則建造此通道最少需要多少萬元?22.(10分)如圖,在底面邊長為1,側(cè)棱長為2的正四棱柱中,P是側(cè)棱上的一點(diǎn),.(1)若,求直線AP與平面所成角;(2)在線段上是否存在一個(gè)定點(diǎn)Q,使得對任意的實(shí)數(shù)m,都有,并證明你的結(jié)論.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】
根據(jù)等比中項(xiàng)性質(zhì)代入可得解,由等比數(shù)列項(xiàng)的性質(zhì)確定值即可.【詳解】由等比數(shù)列中等比中項(xiàng)性質(zhì)可知,,所以,而由等比數(shù)列性質(zhì)可知奇數(shù)項(xiàng)符號相同,所以,故選:B.【點(diǎn)睛】本題考查了等比數(shù)列中等比中項(xiàng)的簡單應(yīng)用,注意項(xiàng)的符號特征,屬于基礎(chǔ)題.2、A【解析】由給定的三視圖可知,該幾何體表示一個(gè)底面為一個(gè)直角三角形,且兩直角邊分別為和,所以底面面積為高為的三棱錐,所以三棱錐的體積為,故選A.3、B【解析】
化簡復(fù)數(shù),由它是純虛數(shù),求得,從而確定對應(yīng)的點(diǎn)的坐標(biāo).【詳解】是純虛數(shù),則,,,對應(yīng)點(diǎn)為,在第二象限.故選:B.【點(diǎn)睛】本題考查復(fù)數(shù)的除法運(yùn)算,考查復(fù)數(shù)的概念與幾何意義.本題屬于基礎(chǔ)題.4、C【解析】
①用周期函數(shù)的定義驗(yàn)證.②當(dāng)時(shí),,,再利用單調(diào)性判斷.③根據(jù)平移變換,函數(shù)的值域等價(jià)于函數(shù)的值域,而,當(dāng)時(shí),再求值域.【詳解】因?yàn)?,故①錯(cuò)誤;當(dāng)時(shí),,所以,所以在上單調(diào)遞增,故②正確;函數(shù)的值域等價(jià)于函數(shù)的值域,易知,故當(dāng)時(shí),,故③正確.故選:C.【點(diǎn)睛】本題考查三角函數(shù)的性質(zhì),還考查推理論證能力以及分類討論思想,屬于中檔題.5、C【解析】
需結(jié)合拋物線第一定義和圖形,得為等腰三角形,設(shè)準(zhǔn)線與軸的交點(diǎn)為,過點(diǎn)作,再由三角函數(shù)定義和幾何關(guān)系分別表示轉(zhuǎn)化出,,結(jié)合比值與正切二倍角公式化簡即可【詳解】如圖,設(shè)準(zhǔn)線與軸的交點(diǎn)為,過點(diǎn)作.由拋物線定義知,所以,,,,所以.故選:C【點(diǎn)睛】本題考查拋物線的幾何性質(zhì),三角函數(shù)的性質(zhì),數(shù)形結(jié)合思想,轉(zhuǎn)化與化歸思想,屬于中檔題6、B【解析】
根據(jù)拋物線中過焦點(diǎn)的兩段線段關(guān)系,可得;再由基本不等式可求得的最小值.【詳解】由拋物線標(biāo)準(zhǔn)方程可知p=2因?yàn)橹本€l過拋物線的焦點(diǎn),由過拋物線焦點(diǎn)的弦的性質(zhì)可知所以因?yàn)闉榫€段長度,都大于0,由基本不等式可知,此時(shí)所以選B【點(diǎn)睛】本題考查了拋物線的基本性質(zhì)及其簡單應(yīng)用,基本不等式的用法,屬于中檔題.7、C【解析】
分別根據(jù)線面平行的性質(zhì)定理以及異面直線的定義,體積公式分別進(jìn)行判斷.【詳解】對于,設(shè)平面與直線交于點(diǎn),連接、,則為的中點(diǎn)分別取、的中點(diǎn)、,連接、、,,平面,平面,平面.同理可得平面,、是平面內(nèi)的相交直線平面平面,由此結(jié)合平面,可得直線平面,即點(diǎn)是線段上上的動(dòng)點(diǎn).正確.對于,平面平面,和平面相交,與是異面直線,正確.對于,由知,平面平面,與不可能平行,錯(cuò)誤.對于,因?yàn)?,則到平面的距離是定值,三棱錐的體積為定值,所以正確;故選:.【點(diǎn)睛】本題考查了正方形的性質(zhì)、空間位置關(guān)系、空間角、簡易邏輯的判定方法,考查了推理能力與計(jì)算能力,屬于中檔題.8、D【解析】
利用復(fù)數(shù)模的計(jì)算、復(fù)數(shù)的除法化簡復(fù)數(shù),再根據(jù)復(fù)數(shù)的幾何意義,即可得答案;【詳解】,對應(yīng)的點(diǎn),對應(yīng)的點(diǎn)位于復(fù)平面的第四象限.故選:D.【點(diǎn)睛】本題考查復(fù)數(shù)模的計(jì)算、復(fù)數(shù)的除法、復(fù)數(shù)的幾何意義,考查運(yùn)算求解能力,屬于基礎(chǔ)題.9、C【解析】分析:根據(jù)復(fù)數(shù)的運(yùn)算,求得復(fù)數(shù)z,再利用復(fù)數(shù)的表示,即可得到復(fù)數(shù)對應(yīng)的點(diǎn),得到答案.詳解:由題意,復(fù)數(shù)z=2i1-i所以復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點(diǎn)的坐標(biāo)為(-1,-1),位于復(fù)平面內(nèi)的第三象限,故選C.點(diǎn)睛:本題主要考查了復(fù)數(shù)的四則運(yùn)算及復(fù)數(shù)的表示,其中根據(jù)復(fù)數(shù)的四則運(yùn)算求解復(fù)數(shù)z是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.10、A【解析】
設(shè)E為BD中點(diǎn),連接AE、CE,過A作于點(diǎn)O,連接DO,得到即為直線AD與平面BCD所成角的平面角,根據(jù)題中條件求得相應(yīng)的量,分析得到即為直線AC與平面ABD所成角,進(jìn)而求得其正弦值,得到結(jié)果.【詳解】設(shè)E為BD中點(diǎn),連接AE、CE,由題可知,,所以平面,過A作于點(diǎn)O,連接DO,則平面,所以即為直線AD與平面BCD所成角的平面角,所以,可得,在中可得,又,即點(diǎn)O與點(diǎn)C重合,此時(shí)有平面,過C作與點(diǎn)F,又,所以,所以平面,從而角即為直線AC與平面ABD所成角,,故選:A.【點(diǎn)睛】該題考查的是有關(guān)平面圖形翻折問題,涉及到的知識(shí)點(diǎn)有線面角的正弦值的求解,在解題的過程中,注意空間角的平面角的定義,屬于中檔題目.11、C【解析】
求得等比數(shù)列的公比,然后利用等比數(shù)列的求和公式可求得的值.【詳解】設(shè)等比數(shù)列的公比為,,,,因此,.故選:C.【點(diǎn)睛】本題考查等比數(shù)列求和公式的應(yīng)用,解答的關(guān)鍵就是求出等比數(shù)列的公比,考查計(jì)算能力,屬于基礎(chǔ)題.12、D【解析】試題分析:拋物線焦點(diǎn)在軸上,開口向上,所以焦點(diǎn)坐標(biāo)為,準(zhǔn)線方程為,因?yàn)辄c(diǎn)A的縱坐標(biāo)為4,所以點(diǎn)A到拋物線準(zhǔn)線的距離為,因?yàn)閽佄锞€上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,所以點(diǎn)A與拋物線焦點(diǎn)的距離為5.考點(diǎn):本小題主要考查應(yīng)用拋物線定義和拋物線上點(diǎn)的性質(zhì)拋物線上的點(diǎn)到焦點(diǎn)的距離,考查學(xué)生的運(yùn)算求解能力.點(diǎn)評:拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,這條性質(zhì)在解題時(shí)經(jīng)常用到,可以簡化運(yùn)算.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】
作出可行域,平移基準(zhǔn)直線到處,求得的最小值.【詳解】畫出可行域如下圖所示,由圖可知平移基準(zhǔn)直線到處時(shí),取得最小值為.故答案為:【點(diǎn)睛】本小題主要考查線性規(guī)劃求最值,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于基礎(chǔ)題.14、【解析】
直接利用關(guān)系式求出函數(shù)的被積函數(shù)的原函數(shù),進(jìn)一步求出的值.【詳解】解:若,則,即,所以.故答案為:.【點(diǎn)睛】本題考查的知識(shí)要點(diǎn):定積分的應(yīng)用,被積函數(shù)的原函數(shù)的求法,主要考查學(xué)生的運(yùn)算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題.15、【解析】
求函數(shù),研究函數(shù)的單調(diào)性和極值,作出函數(shù)的圖象,設(shè),若函數(shù)恰有4個(gè)零點(diǎn),則等價(jià)為函數(shù)有兩個(gè)零點(diǎn),滿足或,利用一元二次函數(shù)根的分布進(jìn)行求解即可.【詳解】當(dāng)時(shí),,由得:,解得,由得:,解得,即當(dāng)時(shí),函數(shù)取得極大值,同時(shí)也是最大值,(e),當(dāng),,當(dāng),,作出函數(shù)的圖象如圖,設(shè),由圖象知,當(dāng)或,方程有一個(gè)根,當(dāng)或時(shí),方程有2個(gè)根,當(dāng)時(shí),方程有3個(gè)根,則,等價(jià)為,當(dāng)時(shí),,若函數(shù)恰有4個(gè)零點(diǎn),則等價(jià)為函數(shù)有兩個(gè)零點(diǎn),滿足或,則,即(1)解得:,故答案為:【點(diǎn)睛】本題主要考查函數(shù)與方程的應(yīng)用,利用換元法進(jìn)行轉(zhuǎn)化一元二次函數(shù)根的分布以及.求的導(dǎo)數(shù),研究函數(shù)的的單調(diào)性和極值是解決本題的關(guān)鍵,屬于難題.16、【解析】
畫圖分析可得函數(shù)是偶函數(shù),且在上單調(diào)遞減,利用偶函數(shù)性質(zhì)和單調(diào)性可解.【詳解】作出函數(shù)的圖如下所示,觀察可知,函數(shù)為偶函數(shù),且在上單調(diào)遞增,在上單調(diào)遞減,故,故實(shí)數(shù)的取值范圍為.故答案為:【點(diǎn)睛】本題考查利用函數(shù)奇偶性及單調(diào)性解不等式.函數(shù)奇偶性的常用結(jié)論:(1)如果函數(shù)是偶函數(shù),那么.(2)奇函數(shù)在兩個(gè)對稱的區(qū)間上具有相同的單調(diào)性;偶函數(shù)在兩個(gè)對稱的區(qū)間上具有相反的單調(diào)性.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)是函數(shù)的極大值點(diǎn),理由詳見解析;(2)1.【解析】
(1)將直接代入,對求導(dǎo)得,由于函數(shù)單調(diào)性不好判斷,故而構(gòu)造函數(shù),繼續(xù)求導(dǎo),判斷導(dǎo)函數(shù)在左右兩邊的正負(fù)情況,最后得出,是函數(shù)的極大值點(diǎn);(2)利用題目已有條件得,再證明時(shí),不等式恒成立,即證,從而可知整數(shù)的最小值為1.【詳解】解:(1)當(dāng)時(shí),.令,則當(dāng)時(shí),.即在內(nèi)為減函數(shù),且∴當(dāng)時(shí),;當(dāng)時(shí),.∴在內(nèi)是增函數(shù),在內(nèi)是減函數(shù).綜上,是函數(shù)的極大值點(diǎn).(2)由題意,得,即.現(xiàn)證明當(dāng)時(shí),不等式成立,即.即證令則∴當(dāng)時(shí),;當(dāng)時(shí),.∴在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,的最大值為.∴當(dāng)時(shí),.即當(dāng)時(shí),不等式成立.綜上,整數(shù)的最小值為.【點(diǎn)睛】本題考查學(xué)生利用導(dǎo)數(shù)處理函數(shù)的極值,最值,判斷函數(shù)的單調(diào)性,由此來求解函數(shù)中的參數(shù)的取值范圍,對學(xué)生要求較高,然后需要學(xué)生能構(gòu)造新函數(shù)處理恒成立問題,為難題18、(1)x2=4y.(2).【解析】試題解析:(Ⅰ)設(shè)點(diǎn)P(x0,),由x2=2py(p>0)得,y=,求導(dǎo)y′=,因?yàn)橹本€PQ的斜率為1,所以=1且x0--√2=0,解得p=2,所以拋物線C1的方程為x2=4y.(Ⅱ)因?yàn)辄c(diǎn)P處的切線方程為:y-=(x-x0),即2x0x-2py-x02=0,∴OQ的方程為y=-x根據(jù)切線與圓切,得d=r,即,化簡得x04=4x02+4p2,由方程組,解得Q(,),所以|PQ|=√1+k2|xP-xQ|=點(diǎn)F(0,)到切線PQ的距離是d=,所以S1==,S2=,而由x04=4x02+4p2知,4p2=x04-4x02>0,得|x0|>2,所以==+1≥2+1,當(dāng)且僅當(dāng)時(shí)取“=”號,即x02=4+2,此時(shí),p=.所以的最小值為2+1.考點(diǎn):求拋物線的方程,與拋物線有關(guān)的最值問題.19、(1)分布列見解析,(1)【解析】
(1)根據(jù)頻率分布直方圖及抽取總?cè)藬?shù),結(jié)合各組頻率值即可求得各組抽取的人數(shù);的可能取值為0,1,1,由離散型隨機(jī)變量概率求法即可求得各概率值,即可得分布列;由數(shù)學(xué)期望公式即可求得其數(shù)學(xué)期望.(1)先求得年齡在內(nèi)的頻率,視為概率.結(jié)合二項(xiàng)分布的性質(zhì),表示出,令,化簡后可證明其單調(diào)性及取得最大值時(shí)的值.【詳解】(1)按分層抽樣的方法拉取的8人中,年齡在的人數(shù)為人,年齡在內(nèi)的人數(shù)為人.年齡在內(nèi)的人數(shù)為人.所以的可能取值為0,1,1.所以,,,所以的分市列為011.(1)設(shè)在抽取的10名市民中,年齡在內(nèi)的人數(shù)為,服從二項(xiàng)分布.由頻率分布直方圖可知,年齡在內(nèi)的頻率為,所以,所以.設(shè),若,則,;若,則,.所以當(dāng)時(shí),最大,即當(dāng)最大時(shí),.【點(diǎn)睛】本題考差了離散型隨機(jī)變量分布列及數(shù)學(xué)期望的求法,二項(xiàng)分布的綜合應(yīng)用,屬于中檔題.20、(1)可以用線性回歸模型擬合與的關(guān)系;(2),預(yù)測2月10日全國累計(jì)報(bào)告確診病例數(shù)約有4.5萬人.【解析】
(1)根據(jù)已知數(shù)據(jù),利用公式求得,再根據(jù)的值越大說明它們的線性相關(guān)性越高來判斷.(2)由(1)的相關(guān)數(shù)據(jù),求得,,寫出回歸方程,然后將代入回歸方程求解.【詳解】(1)由已知數(shù)據(jù)得,,,所以,,所以.因?yàn)榕c的相關(guān)近似為0.99,說明它們的線性相關(guān)性相當(dāng)高,從而可以用線性回歸模型擬合與的關(guān)系.(2)由(1)得,,,所以,關(guān)于的回歸方程為:,2月10日,即代入回歸方程得:.所以預(yù)測2月10日全國累計(jì)報(bào)告確診病例數(shù)約有4.5萬人.【點(diǎn)睛】本題主要考查線性回歸分析和回歸方程的求解及應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題.21、(1),定義域是.(2)百萬【解析】
(1)以為原點(diǎn),直線為軸建立如圖所示的直角坐標(biāo)系,設(shè),利用直線與圓相切得到,再代入這一關(guān)系中,即可得答案;(2)利用導(dǎo)數(shù)求函數(shù)的最小值,即可得答案;【詳解】以為原點(diǎn),直線為軸建立如圖所
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年測繪院個(gè)人工作計(jì)劃
- Unit2 Special Days (Lesson 2)(說課稿)-2023-2024學(xué)年人教新起點(diǎn)版英語五年級下冊
- 2025幼兒園教育教學(xué)工作總結(jié)幼兒園園長計(jì)劃
- 2025年度一年級語文教研組工作計(jì)劃范文
- 2025年考研英語復(fù)習(xí)計(jì)劃表
- SDH光纖傳輸系統(tǒng)行業(yè)相關(guān)投資計(jì)劃提議
- 戊二酮苯相關(guān)行業(yè)投資規(guī)劃報(bào)告
- 2025年設(shè)計(jì)師工作計(jì)劃范文
- 2025年度小學(xué)二年級安全工作計(jì)劃
- Unit 5 On the road Understanding ideas Blogging Australia 說課稿-2024-2025學(xué)年外研版(2019)高中英語必修第二冊
- 七年級上冊道德與法治2023-2024期末試題附答案系列
- 內(nèi)科護(hù)理學(xué)重點(diǎn)總結(jié)
- 2019年海南省公務(wù)員考試申論真題(甲類)
- 事業(yè)部制改革方案
- 2025屆廣東省揭陽市高一生物第一學(xué)期期末統(tǒng)考模擬試題含解析
- CSR報(bào)告與可持續(xù)發(fā)展
- 蘇教版五年級上冊小數(shù)混合運(yùn)算300道及答案
- 第一章問題解決策略:分類討論 教案 2024-2025學(xué)年 魯教版(五四制)六年級數(shù)學(xué)上冊
- 期末復(fù)習(xí)知識(shí)點(diǎn)-2024-2025學(xué)年統(tǒng)編版道德與法治九年級上冊
- 職業(yè)技術(shù)學(xué)校《跨境電子商務(wù)物流與倉儲(chǔ)》課程標(biāo)準(zhǔn)
- 2024年小學(xué)語文名師工作室年度工作總結(jié)
評論
0/150
提交評論