小學數(shù)學-最佳對策教學設(shè)計學情分析教材分析課后反思_第1頁
小學數(shù)學-最佳對策教學設(shè)計學情分析教材分析課后反思_第2頁
小學數(shù)學-最佳對策教學設(shè)計學情分析教材分析課后反思_第3頁
小學數(shù)學-最佳對策教學設(shè)計學情分析教材分析課后反思_第4頁
小學數(shù)學-最佳對策教學設(shè)計學情分析教材分析課后反思_第5頁
已閱讀5頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

《最佳對策》教學設(shè)計

一、設(shè)計背景

“最佳對策”是人教版教材數(shù)學四年級上冊第八單元“數(shù)學廣角一優(yōu)化”中例3的內(nèi)容,主

要是探討“田忌賽馬”對策問題,并從中體會對策論在實際中的應(yīng)用。

教材以“田忌賽馬”作為例題,是因為它是最早、最典型的案例,但是為了讓學生更好的從

數(shù)學的角度去理解這個故事,結(jié)合《數(shù)學課程標準》中提出的''在數(shù)學學習中,選取的素材

要密切聯(lián)系學生的現(xiàn)實生活,運用學生關(guān)注和感興趣的實例作為認知背景”“盡可能地貼近

學生的現(xiàn)實,以利于他們經(jīng)歷從現(xiàn)實情境中抽象出數(shù)學知識與方法的過程”,我創(chuàng)造性的使

用了教材,教學過程以學生喜愛的撲克牌游戲進行探究,在原有要求基礎(chǔ)上設(shè)計了三次認知

沖突,展開了三個層次的探究:L最小一一最大(以弱牽強)2.要有2張大于對方的牌

(保證兩勝)3.必須后出牌(后發(fā)制人)。這樣學生們在游戲中探索出了獲勝的“最佳對策”,

而把“田忌賽馬”由例題變?yōu)榫毩曨},這樣的設(shè)計,以數(shù)字替代文字,以游戲替代故事,更

易于理解,用游戲活動建構(gòu)課堂,讓學生在玩中學,在學中玩,生動有趣,也更具有實效性。

二、教學目標:

(1)經(jīng)歷撲克牌游戲的探究過程,理解并掌握游戲取勝的“最佳對策”,初步體會對策論

在解決實際問題中的應(yīng)用。

(2)通過探究活動,使學生認識到解決問題策略的多樣性,形成尋找解決問題最優(yōu)方案的

意識。

(3)感受數(shù)學在日常生活中的廣泛應(yīng)用,嘗試用數(shù)學的方法來解決生活中的一些問題。

四、教學重點:經(jīng)歷探索“最佳對策”的過程,初步體會對策論在解決實際問題中的應(yīng)用。

教學難點:列出所有可能的方案,初步理解“最佳對策”的原理。

五、教學準備:多媒體課件;撲克牌;學生用表格、棋子等。

六、教學過程:

主要設(shè)計了六個環(huán)節(jié):游戲?qū)дn一合作探究一體驗對策一練習鞏固一拓展提升一回顧總結(jié)。

(-)游戲?qū)дn,設(shè)疑激趣

師:同學們,你們喜歡玩游戲嗎?

生:喜歡!

師:今天老師就和大家一起玩撲克牌比大小的游戲。

(課件展示撲克牌出牌、翻牌過程,呈現(xiàn)紅方、黑方的牌)

師:游戲規(guī)則:每人三張牌,你出一張,我出一張,誰數(shù)字大誰贏,三局兩勝。

師:紅方的牌是?

生:10,7,4o

師:黑方的牌是?

生:9,6,3。

師:同學認為哪一方贏得可能性大?

生:紅方。

師:怎么贏?

生答,10—9,7—6,4—3。

(課件展示)

師:厲害!三局三勝,贏了!

師:看來牌大就是有優(yōu)勢,現(xiàn)在老師把大牌給大家,哪位同學愿意代表紅方和老師比一

比?

(找一位同學到前面站在老師左側(cè),給他紅方的三張牌)

師:其他同學當裁判,要求公正宣布獲勝者的名字,并舉起獲勝方方向的手。

生1:我出10?(舉起撲克牌10)

師:我出3。(舉起撲克牌3)

裁判:生1贏。(舉起右手)

生1:我出7o(舉起撲克牌7)

師:我出9。(舉起撲克牌9)

裁判:王老師贏。(舉起左手)

生I:我出4。(舉起撲克牌4)

師:我出6。(舉起撲克牌6)

裁判:王老師贏。(舉起左手)

師:最終誰獲勝?

裁判:王老師。

師:哈哈,我贏了!誰不服,再和老師比一次?

(同學們都積極的舉起手,師邀請一位同學上臺繼續(xù)與老師比試。第二次比試還是讓學生先

出牌其他要求同上,比賽過程4--6,7——9,10——3,這樣老師又贏得了比賽。

師:牌小也會贏,是王老師運氣好嗎?

生:不是吧!

師:這是因為老師掌握了這個游戲取勝的“最佳對策”。

(板書課題:最佳對策)

師:大家想不想掌握這種取勝的法寶,咱們一起來探究好不好?

生:好!

1.探究活動一

(課件展示活動要求)

師:1.到底牌小的一方是怎樣取勝的?我們不妨站在它的立場上想一想:

假如我是紅方,我的三張牌是:10,7,4,出牌時先出10,再出7,后出4,出牌順序不

變。

師:2.同學們是黑方,你們的三張牌是9,6,3。你們一共有多少種不同的出牌順序與紅

方比大小?試把它們都找出來,并判斷每種策略的獲勝者。

帥:請獨”野

第二局

(四人為一4料耕滁究,教怖巡視、觀察、指尊,多1成表格一.)

發(fā)略1369紅方

(找填的最快f.J1?峨力案埸到曇3板工。)

6黑方

黑篥略3639紅方

方發(fā)略4693紅方

爰略5936紅方

笠略6963紅方

發(fā)略7

........

師:請交流結(jié)束的同學坐好,我們一塊兒分享一下別人智慧的成果。黑板上這組同學是全班

最先一組完成的。

師:想一想:這一組為什么填得快,有什么竅門嗎?

生1:寫得有順序,先讓3開頭有兩種,再讓6開頭有兩種,最后9開頭有兩種。

師:說的真好!看來你很善于觀察和思考!具有數(shù)學家的潛質(zhì)??!這樣寫有什么好處?

生2:有序思考不重不漏。

師:說得太好了!請大家把掌聲送給他。因此我們可以確定黑方一共有多少種種不同的出牌

順序與紅方比大???

生:一共6種。

師:這樣我們可以把表格中剩余兩欄去掉了。觀察比賽結(jié)果,你發(fā)現(xiàn)了什么?

生3:黑方贏的次數(shù)少,紅方贏的次數(shù)多。

師:少到了幾次?

生3:只有一次.

師:就只有一次?。∧沁@種方法可夠高明的??!誰能說說他到底高明在哪?

生4:用最小的對對方最大,用最大的對對方中的,用中的對對方最小的,這樣輸一局贏兩

局,取得勝利。

師:你很善于觀察分析,表達也很清晰!相信你的數(shù)學一定學得很棒!

師:誰能說說用最小的牌對對方最大的牌有什么妙處?

生1:用小牌對對方的大牌,可以留下我們的大牌對付對方的中牌就能贏了。

生2:這樣就能消耗對方的大牌,讓他們的大牌浪費掉。

師:你們的意思是人家的牌“大材小用”了,我們的牌就是?

生:''小材大用

師:我們可以概括為“以弱牽強”。

(板書:最小一一最大(以弱牽強))

2.探究活動二

師:現(xiàn)在同學們已經(jīng)找到了獲勝的“法寶”,咱們再pk一次,老師拿大牌是紅方,你們拿小

牌是是黑方,敢不敢比一比?

生:敢!

(按座位把全班分為兩大組,每組找一位代言人上臺與老師比試,本組其他成員為軍師,做

手勢,另一組當裁判。)

?第一次比試

(從第一組中邀請一位同學上臺比試,第一組的其他同學當軍師,第二組同學當裁判)

(課件展示出牌、翻牌、比賽過程)

師:我出10。(舉起撲克牌10)

生1:我出2。(舉起撲克牌2)

裁判:王老師贏。(舉左手)

師:我出7。(舉起撲克牌7)

生1:我出9。(舉起撲克牌9)

第一局第二局第三局獲勝方

紅方1074

裁判:生1贏。(舉起右手)

師:我出4。(舉起撲克牌4)

生1:我出7。(舉起撲克牌7)

裁判:生1贏。(舉起右手)

師:最終誰獲勝?

(臺下,一組歡呼:我們贏了?。?/p>

?第二次比試

(第二組代表上臺與老師比試,第二組其他同學為軍師,第一組同學為裁判)

(課件展示出牌、翻牌、比賽過程)

師:哈哈,這次同學們的牌好像變小了,還能隔嗎?

生:能?。ㄐ判氖愕臉幼樱?/p>

師:我出7。(舉起撲克牌7)

生2:我出1。(舉起撲克牌1)

(臺下軍師紛紛舉起手,向代表做手勢)

師:臺下軍師有意見啊,你想聽聽嗎?

生2:想!

師:請位軍師起來發(fā)言吧!

軍師:你不能出1,因為老師這次出的不是最大的牌,你應(yīng)該出8,贏1局,等老師出最大

的10時,你再出lo

師:你接受他的建議嗎?

生2:接受。

師:那老師給你一次重新出牌的機會。

生2:我出8。(舉起撲克牌8)

裁判:生2贏。(舉起右手)

師:我出4。(舉起撲克牌4)

生2:(思考片刻,看看軍師的手勢)我出6。(舉起撲克牌6)

裁判:生2贏。(舉起右手)

師:我出10。(舉起撲克牌10)

生2:我出1。(舉起撲克牌1)(露出微笑)

裁判:王老師贏。(舉起左手)

第一局第二局第三局獲勝方

紅方7410

師:這一次比試誰贏了?

裁判:生2贏。(舉起右手)

師:二組在軍師的幫助下也贏了??!我又輸了!

(老師表情沮喪,學生露出得意的神態(tài))

?第三次比試

(這次與男生比試,邀請一人上臺當代表,其他男生為軍師,女生當裁判)

(課件展示出牌、翻牌、比賽過程)

師:哈哈,這次你們的牌,變得更更更小了,還能贏嗎?

生:能!

師:還能贏?

生:能?。曇魷p少了)

師:你們的牌是?

生:1、2、3。

師:能贏嗎?

(學生中出現(xiàn)分歧,有的說能有的說不能。)

師:我找一位能贏得同學上來試試吧!

師:我出4。(舉起撲克牌4)

生3:我出(開始猶豫)

師:怎么了?

生3:我的牌太小了,贏不了!

師:我們的法寶失靈了嗎?

師:想:如果要保證牌小的一方在比賽中有機會獲勝,那最小的三張牌可以是什么?

(同桌交流,完成表格(二))

第一局第二局第三局慶勝方

(學生匯報交流結(jié)果,課件展示探究結(jié)果。)紅方1074

師:通過這次探究活動,你認為黑方要想取勝,黑方

際j以取小叫牌河河力取五的牌外,止要具備?任“余懺?0

生:還要有2張大于對方的牌。

(板書:要有2張大于對方的牌)EI

%?

師:這樣有什么作用?

生:能贏兩局。立1

(板書:保證兩勝)

師:這樣的秘密也被你們發(fā)現(xiàn)了,你們真能干!

3.探究活動三

師:現(xiàn)在同學們已經(jīng)掌握了兩個秘密武器,一定能在游戲中取勝了吧!我們繼續(xù)pk。

(老師代表紅方:10,7,4,女生代表黑方:1,8,5,邀請一位女生上臺與老師比試,其

他女生為軍師,男生為裁判。)

師:你先出牌吧!

生1:我出1。

師:我出4。

裁判:王老師贏。

生1:我出8。

師:我出10o

裁判:王老師贏。

生1:我出5。

師:我出7.

裁判:王老師贏。

師:軍師一直舉手,有問題嗎?

生2:必須老師先出。

師:為什么?

生2:只有知道你出什么,我們才能采取對策。

師:也就是說作為牌小的一方,我們要取勝,除了上面兩個條件,還要有什么條件?

生3:必須后出牌。

(板書:必須后出牌。)

師:也可以說后發(fā)制人。

(板書:后發(fā)制人)

師:只要滿足了這三條,我們就能在實力稍遜的情況下,以弱勝強。

(板書:實力稍遜,以弱勝強。)

師:同學們,游戲獲勝的最佳對策你們掌握了嗎?

師:那就男生女生之間pk一下吧!

師:請看牌:

師:大家預(yù)測一下誰會贏?

(找一個女生)

師:女生能贏嗎?

怎么贏?

師:(找一個男生)

你預(yù)測誰贏,男生能贏嗎?怎么贏?

師:看來男生女生都可能贏!

師:實力相當,智者取勝。

師:這里的智者是以怎樣的智慧取勝的呢?

生:其實這樣的智者取勝的例子,早在2千多年前就發(fā)生了,我們一起欣賞故事《田忌賽馬》

(三)田忌賽馬,體驗對策

(課件播放動畫故事《田忌賽馬》,當播到孫臏對田忌說:“你再同他賽一場我有辦法讓你

取勝”時停)

師:孫臏用了什么對策幫田忌戰(zhàn)勝了齊王呢?

(生口答對策,課件展示。)

師:最終田忌三局兩勝贏得比賽。同學們真了不起,你們現(xiàn)在可以當軍事家了,因為孫臏也

是這么想的。

師:想一想,玩牌游戲中的“最佳對策”與“田忌賽馬”對策的原理一樣嗎?

生:一樣。

師:后來,人們就把這種調(diào)換順序,以弱勝強的對策,叫“田忌賽馬二

(四)聯(lián)系實際,鞏固提升

師:同學們,“田忌賽馬”的對策,在實際生活中還有哪些地方可以應(yīng)用?

(生答)

師:在進行一些團體比賽時,常會用到這一對策。就在2008年的奧運會上就上演了這樣的

一幕,請位同學像廣播員一樣為大家報道一下。(課件出示,生讀)

師:3號種子選手是最強的還是最弱的?

生1:最弱的。

師:3號種子選手的使用運用了對策中的哪一條?

生2:以弱牽強。

師:這樣就保證了后面三場比賽的勝利,贏得了比賽。非常遺憾的是:被打敗是實力較強的

中國香港隊,由于排兵布陣的失誤,他們輸了比賽。

(生表現(xiàn)出難過的表情)

師:現(xiàn)在給大家一個排兵布陣作教練的機會,敢不敢試一試?

生:敢!

師:同學要進行跳繩比賽,這是老師搜集到的材料,如果你是三年級教練,你該如何排兵布

陣才會保證三年級有機會獲勝呢?獨立思考,連一連。(學生每人有一份。)

(學生匯報,課件展示。)

師:同學們真是善于學習與思考??!不僅學到了對策,還能自覺去運用對策,不僅會在三局

比賽中用,還能在四局比賽時用,了不起啊!

師:現(xiàn)在對策問題已經(jīng)發(fā)展成為一門學科。請位同學為大家介紹一下。(課件展示,知識廣

角)

(五)拓展提升,體會多樣。

師:是不是在使用對策的過程中,我們只能后發(fā)制人呢?

下面我們來做個取蘋果的游戲好嗎?(課件展示)

生讀:游戲規(guī)則:這里有10個蘋果,兩人交替拿蘋果,每次只能拿1個或2個,拿到最后

一個蘋果的人將是勝利者。

師;你能戰(zhàn)勝老師嗎?

師:現(xiàn)在請同桌借助手中的棋子玩一玩這個游戲,看看能不能找出這個游戲取勝的最佳對

策?

(找一位學生上臺與老師比試,課件演示過程。)

師:我拿1個。

生1:(沉默思考)

師:你在想什么?

生1:在想獲勝的對策。

師:你想到了嗎?準備拿幾個?

生1:拿2個。

師:我拿1個。

生1:我拿1個。

師:我拿2個。

生1:(猶豫不決)

生:生1輸了!

師:你拿2個我就拿最后1個,你拿1個我就拿2個。

師:哈哈,老師贏了。

師:看來有的同學通過探究,己經(jīng)發(fā)現(xiàn)了游戲獲勝的最佳對策,但是還有些同學需要繼續(xù)試

驗探究。

師:希望同學們課下像數(shù)學家那樣去繼續(xù)探究:假如蘋果數(shù)為11,12,時,結(jié)論又會如何?

相信大家一定行!我們在玩中輸贏是次要的,但更重要的是能夠在游戲中發(fā)現(xiàn)獲勝的方法、

規(guī)律、策略,這就是學數(shù)學。

(六)回顧反思,凝練總結(jié)

師:今天這節(jié)課很有意思吧,同學們,你能起來說說你的收獲嗎?

生1:學會了撲克牌游戲取勝的最佳對策。

生2:取勝要用最好的辦法。

(師生共同總結(jié)提升)

師:在實際生活中,解決問題的策略是多樣的,最佳對策往往起到事半功倍的效果,希望同

學們都能做生活中的有心人,自覺利用所學知識,創(chuàng)造更加美好的生活!謝謝!

七、板書設(shè)計

最隹對策

1MJ{

10*4最小....最大頭

S9tt方

(以弱牽強)稍

9■?方遜

(4s>9tx方要有2張大于對方的牌

?.*3tL方

(保證兩勝)以

*3ti方弱

叫勝

9.Stt力

X*-必須后出牌強

(后發(fā)制人)

附當堂練習

探究活動(一)

1、完成表格。

第一局第一—■局F=I第三局獲勝方

紅方出牌1074

策略1

策略2

卜口

策略3

策略4

策略5

策略6

(1)黑方一共有多少種出牌策略?(2)每種策略的獲勝方是誰(3)把黑方獲

勝的策略圈起來,思考獲勝的策略有什么高明的地方?

策略7

......

探究活動(二)

想一想,使黑方有機會獲勝的最小的三張牌是什么?

(連線)

跳繩比賽

四年級三年級

小王:每分鐘230下小麗:每分鐘200下

小方:每分鐘189下小青:每分鐘175下

小紅:每分鐘150下小強:每分鐘140下

過抽簽,四年級學生先出場,并且所有選手發(fā)揮穩(wěn)定,那么三年級學生有沒有機會取勝,應(yīng)

該怎樣對陣?

《最佳對策》課后達標測評:

1、連線

拍球比賽

五年級四年級

陸莎:230下宋圓圓:220下

趙天:220下小剛:210下

陶欣然:205下何文龍:190下

李明:180下劉佳佳:165下

程剛:155下朱曼:150下

比賽規(guī)則是五局三勝,如果通過抽簽,五年級學生先出場,并且所有選手發(fā)揮穩(wěn)定,那

么四年級學生有沒有機會取勝,應(yīng)該怎樣對陣?

2、談一談本節(jié)課的收獲與困惑?

《最佳對策》學情分析

《最佳對策》是人教版教材數(shù)學四年級上冊第八單元“數(shù)學廣角一優(yōu)化”中例3的

內(nèi)容,主要是探討“田忌賽馬”對策問題,并從中體會對策論在實際中的應(yīng)用。本單元共

安排了3個例題:例1是沏茶,例2為烙餅,例3為田忌賽馬,主要讓學生從數(shù)學角度經(jīng)

歷在多種解決問題的方案中尋求最優(yōu)化方案的過程,初步體會運用運籌學策略及在解決問

題中的作用,進而理解優(yōu)化思想,感悟優(yōu)化思想在解決問題策略中所發(fā)揮的重要作用。本

節(jié)課對學生的學情主要從知識技能基礎(chǔ)和活動經(jīng)驗基礎(chǔ)兩個方面進行闡述。

學生的知識技能基礎(chǔ):二年級上冊學生學習了簡單的排列,三年級下冊學習了簡單

的組合,所以已經(jīng)初步具有了簡單的排列組合的有關(guān)知識,而且對可能性大小有了感性的認

識。在本單元的前兩個例題分別研究了沏茶、烙餅問題。沏茶問題是從“合理”“省時”角

度優(yōu)化沏茶的各個程序。烙餅問題是在探究烙3張餅怎么省時的基礎(chǔ)上,探究多張餅的最優(yōu)

化策略和方法。通過前面的這兩個例題學生對優(yōu)化思想已經(jīng)有了一定體會。

學生的活動經(jīng)驗基礎(chǔ):從一年級起,學生已經(jīng)經(jīng)歷了多次數(shù)學廣角的學習,在前面的

學習

程中,學生已經(jīng)積累了一定的活動經(jīng)驗,經(jīng)歷過有目的、有計劃、有步驟、有合作的實踐活

動,能傾聽別人的意見并能通過分析嘗試提出建議,知道尊重客觀事實不固執(zhí)己見,已經(jīng)可

以結(jié)合實際情境,體驗發(fā)現(xiàn)和提出問題、分析和解決問題,具備小組合作學習、探究的經(jīng)驗

和能力。

學生的生活經(jīng)驗基礎(chǔ):“對策論”本身是比較抽象的概念,日常生活中學生接觸較少,

接受起來有一定難度,這也是老師必須要面對的學情。另外,很多學生對體育比賽中的知識

了解較少,比如種子選手,團體比賽的概念比較模糊,學生接觸比較多的體育項目一般是學

校運動會的項目,因此練習中用了了跳繩比賽、拍球比賽接近學生生活的賽事。

同時,本課屬于“數(shù)學廣角一優(yōu)化”中例3的內(nèi)容,與前面兩個例題相比,難度

較大。因此,課的設(shè)計從撲克牌游戲入手,讓學生去感受“對策”“最佳對策”,這樣,孩

子就不會覺得抽象,難以理解。同時,當讓學生聯(lián)系實際,舉例說明田忌賽馬的對策在實際

生活中的運用時,學生往往很難答得出貼切的例子,為此,老師準備了一個真實的案例,而

且是奧運會上發(fā)生的,讓學生感受到這一知識與實際生活有著密切的聯(lián)系,引發(fā)學生強烈的

探究與學習欲望。

《最佳對策》效果分析

《最佳對策》是四年級上冊“數(shù)學廣角一優(yōu)化”中的內(nèi)容,要求學生綜合運用所學知識和方

法解決問題,有一定難度。同時,“對策論”本身是比較抽象的概念,學生初次接觸,接受

起來有一定難度,為此,從課的設(shè)計上,我重點突破兩大難點;一、理解并掌握田忌賽馬對

策,并能應(yīng)用這一對策解決相關(guān)實際問題。二是,優(yōu)化思想的體會與運用。因此,對本科的

考察上也側(cè)重了這兩點。

第一題,連線,側(cè)重考察對“田忌賽馬“對策的理解和掌握。

連線

拍球比賽

五年級四年級

陸莎::230下宋圓圓:220下

趙天::220下小剛:210下

陶欣然::205下何文龍:190下

李明::180下劉佳佳:165下

程剛::155下朱曼:150下

比賽規(guī)則是五局三勝,如果通過抽簽,五年級學生先出場,并且所有選手發(fā)揮穩(wěn)定,那

么四年級學生有沒有機會取勝,應(yīng)該怎樣對陣?

這道題共有32人測試,其中2人出錯,占6.25%,出錯的原因分析,一人沒有掌握取勝

的最佳對策,一人審題錯誤,最后獲勝方為五年級學生.其他30人全部做對,效果較理想。

從作對的答案來看,也出現(xiàn)了兩種不同的解題策略。一種是:

拍球比賽

五年級四年級

陸莎:230圓圓:220下

趙天:220《、剛:210下

陶欣然:205下可文龍:190下

李明:180下劃佳佳:165下

程剛:155下曼:150下

這樣做的有21人,占做對人數(shù)的70%,說明多數(shù)學同學不僅掌握了“田忌賽馬"對策,而

且可以靈活運用,對“以弱牽強”這一招數(shù)理解很到位,應(yīng)用很靈活。另外9人是這樣做的:

拍球比賽

五年級四年級

陸莎:230下、^一宋圓圓:220下

趙天:220于剛:210下

陶欣然:205下一何文龍:190下

李明:180下一一二佳佳:165下

程岡U:155下一一i'">曼:150下

也屬于正確解答,三局兩勝。

第二題,把本節(jié)課中你最大的收獲寫出來。本節(jié)課主要通過課后回顧讓學生寫出自己的收

獲,看看給孩子留下最深印象的是什么?

有27個學生提到了撲克牌游戲取勝的最佳對策,一來說明經(jīng)歷的游戲和探究過程,給孩

子留下了深刻影響,學生掌握了這一對策,另外也說明學生習慣于從知識層面總結(jié)知識。19

人提到了最佳對策可以使人以弱勝強,體會到了最佳對策的重要作用。9人提到了解決問題

時要用最佳對策,看來優(yōu)化思想已經(jīng)深入內(nèi)心。

《最佳對策》教材分析

《最佳對策》是人教版教材數(shù)學四年級上冊第八單元“數(shù)學廣角一優(yōu)化”中例3的內(nèi)容,

主要是探討“田忌賽馬”對策問題,并從中體會對策論在實際中的應(yīng)用。

《最佳對策》屬于數(shù)學廣角這一部分的內(nèi)容,要求學生綜合運用所學知識和方法解

決問題,有一定難度。同時,“對策論”本身是比較抽象的概念,學生初次接觸,接受起來

有一定難度。本單元的主題是--優(yōu)化。本單元共安排了3個例題:例1是沏茶,例2為烙

餅,例3為田忌賽馬,主要讓學生從數(shù)學角度經(jīng)歷在多種解決問題的方案中尋求最優(yōu)化方案

的過程,初步體會運用運籌學策略及在解決問題中的作用,進而理解優(yōu)化思想,感悟優(yōu)化思

想在解決問題策略中所發(fā)揮的重要作用。前兩個例題分別研究了沏茶、烙餅問題。沏茶問題

是從“合理”“省時”角度優(yōu)化沏茶的各個程序。烙餅問題是在探究烙3張餅怎么省時的基

礎(chǔ)上,探究多張餅的最優(yōu)化策略和方法。而最佳對策這個例題由于蘊含對策論的知識,更加

的抽象難以理解。三個例題的編排應(yīng)該是從淺入深,難度逐漸加大。

教材以“田忌賽馬”作為例題,是因為它是最早、最典型的案例,但是為了讓學生

更好的從數(shù)學的角度去理解這個故事,結(jié)合《數(shù)學課程標準》中提出的“在數(shù)學學習中,選

取的素材要密切聯(lián)系學生的現(xiàn)實生活,運用學生關(guān)注和感興趣的實例作為認知背景”“盡可

能地貼近學生的現(xiàn)實,以利于他們經(jīng)歷從現(xiàn)實情境中抽象出數(shù)學知識與方法的過程”,我創(chuàng)

造性的使用了教材,教學過程以學生喜愛的撲克牌游戲進行探究,在原有要求基礎(chǔ)上設(shè)計了

三次認知沖突,展開了三個層次的探究:1.最小最大(以弱牽強)2.要有2張大于

對方的牌(保證兩勝)3.必須后出牌(后發(fā)制人)。這樣學生們在游戲中探索出了獲勝的“最

佳對策”,而把“田忌賽馬”由例題變?yōu)榫毩曨},這樣的設(shè)計,以數(shù)字替代文字,以游戲替

代故事,更易于理解,用游戲活動建構(gòu)課堂,讓學生在玩中學,在學中玩,生動有趣,也更

具有實效性。

本節(jié)課教學的重點是:讓學生經(jīng)歷自主探究“最佳對策”的過程,體驗解決問題策略

的多樣性,及最佳對策的優(yōu)越性,積累活動經(jīng)驗,感悟數(shù)學思想。難點一是通過列舉法列出

黑方出牌的所有策略。二是感悟優(yōu)化的數(shù)學思想。

整節(jié)課,我主要以“問題情境——建立數(shù)學模型一一解釋、應(yīng)用模型一一拓廣”為主

線,設(shè)計教學教學活動。正如蘇霍姆林斯基所說:“疑問本身是一種激發(fā)求知欲的刺激物”

特別是像“如何在游戲中獲勝?”這種問題,更能激發(fā)學生強烈的探究欲望,滿足學生的“好

奇心”“好勝心”,經(jīng)歷了游戲探究的過程,也就經(jīng)歷了知識形成的過程,也就建立模型;再

回歸課本,通過欣賞動畫故事一一田忌賽馬,解釋模型;通過奧運會女子乒乓求團體銅牌附

加賽、班級跳繩比賽,應(yīng)用模型;通過知識廣角,取蘋果游戲達到拓廣提升的目的。

在建立數(shù)學模型的過程,經(jīng)歷“平衡一不平衡-新的平衡”的過程,通過解決認知沖突,

完成建模過程。杜威說過:“沖突對思想來說是一種觸媒”。在“探究活動一”中,學生通過

枚舉法,發(fā)現(xiàn)了獲勝的“法寶一”:最小對最大(以弱牽強),在“探究活動二”中,打破了

這種平衡,當學生試圖用撲克牌1,2,3,戰(zhàn)勝老師的10,7,4,發(fā)現(xiàn)“法寶”失靈,通過“探

究活動二”發(fā)現(xiàn)還要補充一條“新的法寶”,即要有兩張大于對方的牌(保證兩勝)。學生滿

心歡喜的以為自己已經(jīng)掌握了取勝的“最佳對策”,但是“探究活動三”中又出現(xiàn)了新的沖

突,學生通過游戲發(fā)現(xiàn)要想獲勝還要加上一個條件即必須后出牌。這樣經(jīng)歷了三次沖突,在

解決認知沖突的過程中,完成了對新知識的建構(gòu)過程。

為了讓每個學生都參與教學活動,調(diào)動他們的課堂參與度,我充分挖掘了學生資源,

如游戲探究的過程中設(shè)置了多種角色:有軍事,有裁判,有代言人,活動的形式有:做手勢

表示出牌數(shù)字、舉手方向表示獲勝方,保證全員參與,氣氛活躍,效果好。探究的方式有:

小組交流、同位交流、獨立思考。只有這樣,通過學生積極有效的參與活動,引發(fā)了學生的

思考,經(jīng)歷了知識形成的過程,讓每個學生都有所收獲。

本單元共計3課時,本課可以集中在1課時內(nèi)完成。

《最佳對策》評測練習

探究活動(一)

2、完成表格。

(1)黑方一共有多少種出牌策略?(2)每種策略的獲勝方是誰(3)把黑方獲

勝的策略圈起來,思考獲勝的策略有什么高明的地方?

探究活動(二)

想一想,使黑方有機會獲勝的最小的三張牌是什么?

第一局第二局第三局獲勝方

紅方出牌1074

策略1

黑策略2

策略3

牌策略4

策略5

策略6

策略7

.......

第一局第二局第三局獲勝方

紅方1074

黑方

線)

跳繩比賽

四年級三年級

小王:每分鐘230下小麗:每分鐘200下

小方:每分鐘189下小青:每分鐘175下

小紅:每分鐘150下小強:每分鐘140下

小明:每分鐘130下小易:每分鐘128下

比賽規(guī)則是四局三勝,如果通過抽簽,四年級學生先出場,并且所有選手發(fā)揮穩(wěn)定,那么三

年級學生有沒有機會取勝,應(yīng)該怎樣對陣?

《最佳對策》課后達標測評:

1、連線

拍球比賽

五年級四年級

陸莎:230下宋圓圓:220下

趙天:220下小剛:210下

陶欣然:205下何文龍:190下

李明:180下劉佳佳:165T

程剛:155下朱曼:150下

比賽規(guī)則是五局三勝,如果通過抽簽,五年級學生先出場,并且所有選手發(fā)揮穩(wěn)定,那

么四年級學生有沒有機會取勝,應(yīng)該怎樣對陣?

2、談一談本節(jié)課的收獲與困惑?

《最佳對策》課后反思

《最佳對策》是四年級上冊“數(shù)學廣角一優(yōu)化”中的內(nèi)容,要求學生綜合運用所學知識

和方法解決問題,有一定難度。同時,“對策論”本身是比較抽象的概念,學生初次接觸,

接受起來有一定難度,所以,設(shè)計課之前我一直思考兩個問題:L如何關(guān)注到全體學生,

不把這樣一節(jié)課上成培優(yōu)課。2.如何讓學生經(jīng)歷知識形成的過程,正確建模,理解優(yōu)化思

想及對策知識。從這節(jié)課的實際效果來看,這兩個問題基本有效解決了,到底如何突破的這

兩個問題,我反思了教學過程主要有以下幾點:

(一)、以游戲活動建構(gòu)課堂。

《數(shù)學課程標準》指出:“數(shù)學課堂教學應(yīng)向?qū)W生提供與生活實際密切的、現(xiàn)實的、有趣的、

富有挑戰(zhàn)性的數(shù)學學習內(nèi)容。”因此,我創(chuàng)造性的使用教材,以撲克牌游戲開始,又以取蘋

果游戲結(jié)束,教學過程把探究的主題由撲克牌比大小的游戲為主,這樣把抽象的文字變?yōu)橹?/p>

觀的數(shù)字,整個建模的過程,以學生喜歡的游戲活動展開,比故事更有吸引力,數(shù)字比文字

更易于從數(shù)學的角度理解,讓學生在輕松的游戲中建構(gòu)了知識,提高了學生學習的興趣,“興

趣就是最好的老師”。教育家夸美紐斯曾經(jīng)說過:“提供一種既令人愉快又有用的東西,當學

生們的思想經(jīng)過這樣的準備之后,他們就會以極大的注意力去學習?!?/p>

(二)、以“問題情境一一建立數(shù)學模型一一解釋、應(yīng)用模型——拓廣”為主線,設(shè)計教

學教學活動。

正如蘇霍姆林斯基所說:“疑問本身是一種激發(fā)求知欲的刺激物”特別是像“如何在游戲中

獲勝?”這種問題,更能激發(fā)學生強烈的探究欲望,滿足學生的“好奇心”“好勝心”,經(jīng)歷

了游戲探究的過程,也就經(jīng)歷了知識形成的過程,也就建立模型;再回歸課本,通過欣賞動

畫故事一一田忌賽馬,解釋模型;通過奧運會女子乒乓求團體銅牌附加賽、班級跳繩比賽,

應(yīng)用模型;通過知識廣角,取蘋果游戲達到拓廣提升的目的。

(三)、建立數(shù)學模型的過程,經(jīng)歷“平衡一不平衡-新的平衡”的過程,通過解決認知沖突,

完成建模過程。

杜威說過:“沖突對思想來說是一種觸媒”。在“探究活動一”中,學生通過列舉法,發(fā)現(xiàn)了

獲勝的“法寶一”:最小對最大(以弱牽強),在“探究活動二”中,打破了這種平衡,當學

生試圖用撲克牌1,2,3,戰(zhàn)勝老師的10,7,4,發(fā)現(xiàn)“法寶”失靈,通過“探究活動二”發(fā)現(xiàn)

還要補充一條“新的法寶”,即要有兩張大于對方的牌(保證兩勝)。學生滿心歡喜的以為自

己已經(jīng)掌握了取勝的“最佳對策”,但是“探究活動三”中又出現(xiàn)了新的沖突,學生通過游

戲發(fā)現(xiàn)要想獲勝還要加上一個條件即必須后出牌。這樣經(jīng)歷了三次沖突,在解決認知沖突的

過程中,完成了對新知識的建構(gòu)過程。

(四)、通過有效的教學活動,讓全體同學積極參與,讓每個學生都有所收獲。

要關(guān)注全體學生,盡量避免把這樣活動課上成培優(yōu)課,所以無論是在教學內(nèi)容的選擇還是教

學活動的設(shè)計都讓全體同學樂于,也能夠參與其中,如游戲探究的過程中設(shè)置了多種角色:

有軍事,有裁判,有代言人,活動的形式有:做手勢表示出牌數(shù)字、舉手方向表示獲勝方,

保證全員參與,氣氛活躍,效果好。探究的方式有:小組交流、同位交流、獨立思考。只有

這樣,通過學生積極有效的參與活動,引發(fā)了學生

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論