版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
AutomaticControlTheory
SchoolofInformationandEngineering,ZZU1
TextBook:吳麟,自動(dòng)控制原理(上、下),北京:清華大學(xué)出版社
OtherReferenceTeachingBooks:
JohnJ.D’Azzo.LinearControlSystemAnalysisandDesign(線性控制系統(tǒng)分析與設(shè)計(jì),第4版).北京:清華大學(xué)出版社
RichardC.Dorf,RobertH.Bishop.ModernControlSystems(NinthEdition)(現(xiàn)代控制系統(tǒng)
第九版).北京:科學(xué)出版社胡壽松.自動(dòng)控制原理(第四版).北京:科學(xué)出版社
2
Period:
Teachinghours:48hours
Exams:
Closed
exam.
Grading:
Homework20%,Finalexam80%3
Bytheendofthiscourse,thestudentshouldbeabletoFormulateamathematicalmodelofagivenphysicalsystemintimeandLaplacedomain.Identifythesystemorderandtype.Determinethesystem’stimeresponseduetoastep,rampandharmonicinput.4Evaluatethesystemstabilityusing:Routh-Hurwitzcriterion,rootlocusandNyquistdiagrams.ApplyclassicalcontrolmethodssuchasBodeplots,todesignclosedloopcontrolofthesystem.Applystatespacerepresentationofamultipleinputmultipleoutput(MIMO)system.DesignacontrollerandobserverforaMIMOsystem.5Chapter1Introduction
1.1AutomaticControl
1.2Open-loopControlSystemandClosed-loopControlSystem
1.3ConstituteofFeedbackControlSystem
1.4ClassifyofControlSystem
61.1AutomaticControl
1、AutomaticControlSystemspermeatelifeinalladvancedsocietiestoday.Technologicaldevelopmentshavemadeitpossibletotraveltothemoon;exploreouterspace.Andthesuccessfuloperationofspacevehicle;thespaceshuttle;spacestation;robot;industrycontrol,suchasthecontroloftemperature,pressure,fluid,lever,andsoon.
7
2、SomeTerminologies
A
controlsystem--------
A
controlsystem
isaninterconnectionofcomponentsformingasystemconfigurationthatwillprovideadesiredsystemresponse.
Referenceinput(Desiredoutput)------Excitationappliedtoacontrolsystemfromanexternalsource.Thereferencesignalproducedbythereferenceselector.Itistheactualsignalinputtocontrolsystem.8
Disturbanceinput-------Adisturbanceinputsignaltothesystemthathasanunwantedeffectonthesystemoutput.
Output(controlledvariable)--------Thequantitythatmustbemaintainedataprescribedvalue,i.e.,itmustfollowthecommandinputwithoutrespondingtodisturbanceinputs.
Feedback-----Theoutputofasystemthatisreturnedtomodifytheinput.9
Error-----Thedifferencebetweentheinputandtheoutput.
Open-loopcontrolsystem–Asysteminwhichtheoutputhasnoeffectupontheinputsignal.
Feedbackelement–Theunitprovidesthemeasurementvalueforfeedingbacktheoutputquantity,orafunctionoftheoutput,inordertocompareitwiththereference.10
Actuatingsignal(errorsignal)–Thesignalthatisthedifferencebetweenthereferenceinputandthefeedbacksignal.Itistheinputtothecontrolunitthatcausestheoutputtohavethedesiredvalue.
Negativefeedback–Theoutputsignalisfeedbacksothatitsubtractsfromtheinputsignal.
11
Closed-loopcontrolsystem–Asysteminwhichtheoutputhasaneffectupontheinputquantityinsuchamannerastomaintainthedesiredoutputvalue.Thatis,asystemthatusesameasurementoftheoutputandcomparesitwiththedesiredoutput.12
3、Controlsystemsareusedtoachieve:(1)increasedproductivity;(2)improvedperformanceofadeviceorsystem.Thecontrolofanindustrialprocess(manufacturing,production,andsoon)byautomaticratherthanmanualmeansisoftencalledautomation.Automationisusedtoimproveproductivityandobtainhigh-qualityproducts.13
4、Historyofautomaticcontrol
(1)Thefirstautomaticfeedbackcontro-llerusedinanindustrialprocessisgenerallyagreedtobeJamesWalt’sflyballgovernor,developedin1769forcontrollingthespeedofasteamengine.ShowninFig.1.1.
14Fig.1.1JamesWatt’sFlyballGovernor(1769)
Theall-mechanicaldevice,showninFig.1.1,measuredthespeedoftheoutputshaftandutilizedthemovementoftheflyballwithspeedtocontrolthevalveandthereforetheamountofsteamenteringtheengine.Asthespeedincreases,theballweightsriseandmoveawayfromtheshaftaxis,thusclosingthevalve.Theflyweightsrequirepowerfromtheenginetoturnandthereforecausethespeedmeasurementtobelessaccurate.
16
(2)J.C.Maxwellformulatedamathema-ticaltheoryrelatedtocontroltheoryusingadifferentialequationmodelofagovernor.(1868)
(3)Conventionalcontroltheoryiseffectivelyappliedtomanycontroldesignproblems,especiallytoSISOsystems.ItsmathematicalfoundationistheLaplacetransform.17
Routh1884;Hurwitz1895,algebrastabilitycriterion;
1932,Nyquist,steady-statefrequency-responsetechniques;
1927,BodeandNichols,frequency-responseanalysis;
1948,Evans,root-locustheory;
A.M.Lyapunov,stabilitytheory.18
(4)Moderncontroltheory(1960)isbasedonstatevariablemethods,forthedesignofmultiple-inputmultiple-output(MIMO)systems.Wiener(1949),Optimumdesign.Bellman(1957),Dynamicprogramming.Pontryagin(1962),Maxmumprinciple.Kalman(1960),ControllabilityandobservabilityKalmanandBuey(1961),Combinationofoptimalfilterandoptimalcontroller,LinearquadraticGaussian(LQG)control.19ClassicalcontroltheoryModerncontroltheory
SISO,linear,time-unvaryingsystem
MIMO,nonlinear,time-varyingsystem
Laplacetransform
matrix,vector,linearalgebra
Time,complexnumber,frequencydomain
Timedomain
output
state(5)Advancedcontroltheory(1980)Robusttheory.(1980s)Intelligentcontroltheory:ArtificialNeuralNetworks(ANNS);FuzzyControl(FC);ExpertSystem(ES).GA,GP,EC,Chaosetc.RETURN21
1.2Open-loopControlSystem
andClosed-loopControlSystem
1、Acontrolsystemisaninterconn-ectionofcomponentsformingasystemconfigurationthatwillprovideadesiredsystemresponse.
Acomponentofprocesstobecontrolledcanberepresentedbyablock,asshowninFig.1.2.
22(Stimulus)(Response)Cause(Desiredresponse)Effect(Actualresponse)23
2、Anopen-loopcontrolsystemutilizesacontrollerorcontrolactuatortoobtainthedesiredresponse,asshowninFig.1.3.
Thecontrolactioniscalculatedattheinitialtimet0andthenappliedtothephysicalsystemovertheentirecontrolhorizon[t0,tf]withoutmodification.Theoutputisnotobserved.
Anopen-loopcontrolsystemutilizesanactuatingdevicetocontroltheprocessdirectlywithoutusingfeedback.
Anotheropen-loopcontrolsystem:253、Themeasureoftheoutputiscalledthefeedbacksignal.Asimpleclosed-loopfeedbackcontrolsystemisshowninFig.1.4orFig.1.5.
Theadvantagesanddisadvantagesofopen-loopcontrolsystemandclosed-loopcontrolsystemTheexamplesofclosed-loopsystem:Example1:Example2:4.Complexcontrolsystem(idealcontrolmethod)
Combineopen-loopcontrolwithclosed-loopcontrolRETURN271.3ConstituteofFeedbackControlSystem
1、ConstituteoffeedbackcontrolsystemPlant+ControllerPlant(process):Thedevice,plantorsystemundercontrol.Measurementcomponent(Sensor);Comparisoncomponent;Amplifier;Actuatingdevice;Compensator;Controller28ComparedeviceCompensatoramplifieractuatorplantDisturbsignalInputdeviceReferenceinputControlsignalsensorMeasuredevicecontrollerstructureofgeneralcontrolsystem292、AnalysisofcontrolsystemStability:themostimportant;Performance:thetransientandsteady-stateresponseperformance;Robustness.30StabilityTransientperformancesteady-stateperformance3、“Control”
“Control”isthedesignandanalysisofsensors,actuators,andcomputationalsystems(analogordigital)tomodifythebehaviorofphysicalsystems.34Typicalsteps:SelectionofactuatorsandsensorsDevelopmentofadynamicmodelofthesystemtobecontrolledDesignofcontrolsystemsbasedonthesoundfundamentalprinciplesImplementationofthecontrollerusinganalogordigitalelectronics354、Designofcontrolsystem(1)Establishthesystemgoals.(2)Identifythevariablestocontrol;(3)Writethespecificationsforthevariables;(4)Establishthesystemconfigurationandidentifytheactuator;(5)Obtainamodeloftheprocess,theactuatorandthesensor;(6)Describeacontrollerandselectkeyparameterstobeadjusted;(7)Optimizetheparametersandanalyzetheperformance.36RETURN1.4ClassifyofControlSystem1.Theformofsystem’smathematicsmodelLinearsystem/Nonlinearsystem:thedynamicequationofsystemislineardifferentialequation/nonlineardifferentialequation.
Alinearsystemsatisfiestheprincipleofsuperposition.38Time-varyingsystemandtime-invariantsystem
Time-varyingsystemisasystemforwhichoneormoreoftheparametersofthesystemmayvaryasafunctionoftime.2.Referenceinputr(t)=constantr(t)=f(t)canbeknownthevaryrulef(t)cann’tbeknown“servo”393.Thetransfersignalsequence-timesystem
discrete-timesystem40Summary
Inordertodesignandimplementacontrolsystem,thefollowingessentialgenericelementsarerequired:1)KnowledgeofthedesiredvalueItisnecessarytoknowwhatitisyouaretryingtocontrol.412)KnowledgeoftheoutputoractualvalueThismustbemeasuredbyafeedbacksensor,againinaformsuitableforthecontrollertounderstand.Inadditional,thesensormusthavethenecessaryresolutionanddynamicresponse,sothatthemeasuredvaluehasaccuracyrequiredfromtheperformancespecification.3)KnowledgeofthecontrollingdeviceThecontrollermustbeabletoacceptmeasure-mentsofdesiredandactualvaluesandcomputeacontrolsignalinasuitableformtodriveanactuatingelement.424)KnowledgeoftheactuatingdeviceThisunitamplifierthecontrolsignalandprovidesthe“effort”tomovetheoutputoftheplanttowardsitsdesiredvalue.5)KnowledgeoftheplantMostcontrolstrategiesrequiressomeknowledgeofthestaticanddynamiccharacteristicoftheplant.Thesecanbeobtainedform
measurementsorformtheapplicationofFundamentalphysicallaws.orcombinationofboth.RETURN43
Aclosed-loopcontrolsystemusesameasurementoftheoutputandfeedbackofthesignaltocompareitwiththedesiredoutput(referenceofcommand).
Ageneralcontrolsystemcanberepresentedas:FeedbackelementActuatingsignal(errorsignal)
Anotherblockdiagramofageneralizedfeedbackcontrolsystem
1.5RETURN
open-loopcontrolsystemThemainadvantages:1)Muchsimpleandlessexpansivetoconstruct;2)Easytohavegoodstability;
Themaindisadvantages:Requiredetailedknowledgeofeachcomponentinordertodeterminetheinputvalueforarequiredoutput.
Theadvantagesanddisadvantagesofopen-loopcontrolsystemandclosed-loopcontrolsystem
closed-loopcontrolsystemThemainadvantages:
1)Havehigheraccuracy;
2)Notrequiredetailedknowledgeofeachcompo-nentoraccuratemodeloftheindividualcomponent;
3)Theabilitytorecoverfromexternal,unwanteddisturbances;
4)Reducedsensitivitytodisturbance;
Themaindisadvantages:
1)Complexandexpensivetoconstruct;
2)thelossofgain;
3)Quiteeasytobecomeunstable.
47Formostcases,theadvantagesfaroutweighthedisadvantages,andafeedbacksystemisutilized.Thereforeitisnecessarytoconsidertheadditionalcomplexityandtheproblemofstabilitywhendesigningacontrolsystem.RETURN
Example1:Awatertemperaturecontrolsystem
1.61.7Observe(throughsenses)Computeacontrolaction(throughbrain)andapplythecontrolAction(throughhands,feet,etc!)RETURNExample2:watertemperaturecontrolsystemwithaautomaticmethod1.8
Theblockdiagramofthewatertemperatureautomaticcontrolsystem
1.9
Comparemanualcontrolmethodtoautomaticcontrolmethod
Brain----Thermostat(Referenceinputordesiredoutput)Nervoussystem----DifferencingjunctionHand----Amplifier,MotorandWheeldrivers
EyesandSkinsensor---Temperaturesensor
MixerValve----MixerValveChapter2SystemModeling2.1
Mathematicalmodels2.2
Dynamicsequation2.3
Statespaceandstateequation2.4
Lineardifferentialequation2.5
Stateequation2.6
Transferfunction(matrix)2.7
Transferfunctionofclose-loopsystem2.8
Fundamentalparts2.9
Signalflowgraphs2.10
Impulseresponseandstepresponse2.11
Summary
Excises552.1
MathematicalModelsThefundamentalconceptofmathematicalmodelThefundamentalformsofmathematicalmodelsThemethodofmodelingThestepsofanalyzingandstudyingadynamicsystemInstructionalobjectivesAppendix:Propertyoflinearsystem56Ifthedynamicbehaviorofaphysicalsystemcanberepresentedbyanequation,orasetofequations,thisisreferredtoasthemathematicalmodelofthesystem.
Modelofsystem–therelationshipbetweenvariablesinsystem.
Whydowemuststudythemodelofcontrolsystem?
Quantitativemathematicalmodelsmustbeobtainedtounderstandandcontrolcomplexdynamicsystems.(analysisanddesign)1.Mathematicalmodel57Mathematicalexpression
DifferentialEquation:
(timedomainmodel)
areusedbecausethesystemsaredynamicinnature.
Impulsetransferfunction;state-spaceequation.Assumptionsareneededbecauseofthecomplexityofsystemsandtheignoranceofalltherelevantfactors..2.Thefundamentalformsofmathematicalmodel58Transferfunction(sdomainmodel)Laplacetransformisutilizedtosimplifythemethodofsolutionforlinearequations.
BlockdiagramandSignalflowdiagramResponseCurve(nonparametermodel)
frequencyresponsecurve;Bodediagram593.ThemethodofmodelingAnalyticalmethod:Itcanbeconstructedfromknowledgeofthephysicalcharacteristics
ofthesystemExperimentalmethodOthers.(NN)60Definethesystemanditscomponents.Formulatethemathematicmodelandlistthenecessaryassumptions.Writethedifferentialequationsdescribingthemodel.Solvetheequationsforthedesiredoutputvariables.Examinethesolutionsandtheassumptions.Ifnecessary,reanalyzeorredesignthesystem.4.Thestepsofanalyzingandstudyingadynamicsystem61
5.InstructionalobjectivesDevelopdynamicmodelsofphysicalcomponents.Derivationoftransferfunctions.Blockdiagramrepresentation.Blockdiagramrulesandsimplifytheblockdiagramtodeterminetheclosed-looptransferfunction.62Themathematicalmodelofasystemislinear,ifitobeystheprincipleofsuperposition(orprincipleofhomogeneity).Thisprincipleimpliesthatifasystemmodelhasresponsesy1(t)andy2(t)toanytwoinputsx1(t)andx2(t)respectively,thenthesystemresponsetothelinearcombinationoftheseinputs:ax1(t)+bx2(t)isgivenbythelinearcombinationoftheindividualoutputs,i.e.ay1(t)+by2(t).6.Appendix:Propertyoflinearsystem63Figure2.1MeaningofalinearsystemReturn642.2
Dynamicsequation
2.2.1
Derivationofthedifferentialequations2.2.2Linearapproximationsofnonlinearequation2.2.3Thedifferentialequationsofcomplexplants2.2.4Singlevariabledifferentialequation’sderivationoforiginalequations2.2.5Dynamicsequationofdiscrete-timesystemReturn652.2.1Derivationofthedifferentialequations
Inordertoanalyzethebehaviorofphysicalsystemsintimedomain,wewritethedifferentialequationsrepresentingthosesystems:
Electricalsystems(KVLand/orKCL,aelectricnetworkcanbemodeledasasetofnodalequationsusingKirchhoff’scurrentlaworKirchhoff’svoltagelaw).
66
Mechanicalsystems(Newton’slawsofmotion)Hydraulicsystems(Thermodynamic&Conservationofmatter)Thermalsystems(Heattransferlaws,Conservationofenergy)
Thestandarddifferentialequationis:outputinput67Thenumberofindependentenergystoragecomponentsinasystemdeterminetheorderofthatsystem.Annthorderdifferentialequationimpliesnindependentenergystoringcomponentsandyouneedninitialconditions.where
n≥m
foraphysicallyrealizablesystem.6869707172737475Example.2.1Displacementsystemofspring-mass-damper76
Example2.2:DifferentialequationofaR-L-Cnetwork.
uc(t)
istheoutputvoltageandu(t)
isthevoltagesource.LRCu(t)uc(t)++i(t)Figure2.2R-L-Cnetwork77TheequationoftheRLCnetworkshowninFig.2.2isobtainedbywritingtheKirchhoffvoltageequation,yielding
Therefore,solvingEq.(2)foriandsubstitutinginEq.(1),wehave78
arethetimeconstantsofthenetwork.
79AnalogousvariablesandsystemsRewritingthefollowingequationsintermsofdisplacementandvoltagerespectivelyItisobviousthattheyareequivalent.Displacementx(t)andvoltageuc(t)areequivalentvariables,usuallycalledanalogousvariables,andthesystemsareanalogous
systems.80Theconceptofanalogoussystemsisaveryusefulandpowerfultechniqueforsystemmodeling.Analogoussystemswithsimilarsolutionsexistforelectrical,mechanical,thermal,andfluidsystems.Theanalystcanextendthesolutionandtheunderstandingofonesystemtoallanalogoussystemswiththesamedescribingdifferentialequations.Analogoussystemshavethesameformsolution.81
Conclusion:
Differentphysicalsystemcangainsimilardifferentialequations.Thedifferentialequationsreflecttheessencecharacteristicsofsystem.82Example2.3Differentialequationofdcmotor.IaU(t)MΩML
EaJLoadΦdRa,Ladcmotorwiringdiagram83Thearmaturecurrentisrelatedtotheinputvoltageappliedtothearmatureas:
whereEa
isthebackelectromotive-forcevoltageproportionaltothemotorspeed,Uisinputvoltage,Iaisthearmaturecurrent,,La
isthemotorinductance,Raismotorresistance.84
Misthemotortorque,MListheloadtorque,Jistherotorinertia,Ωisthe(angular)velocityofthemotorbearings.
where
kdisdefinedasthemotorconstant.85Therearetwofirst-orderdifferentialequationsandtwoalgebraicequations,andsixvariablesU,Ea,,
Ia,M,ML,J,Ω.U
andML
aretheinputvariables,
whichleadtothemotor’smovement.IfweregardasΩbetheoutputvariable,othersbethemiddlevariables.Thedifferentialequationofthemotor-loadcombinationis86isthefieldtimeconstantofthearmature;isthetimeconstantofthemotorarmature;Generally,IfTa
isneglected,theequationisReturn872.2.2LinearApproximations
ofnonlinearequationAgreatmajorityofphysicalsystemsarelinearwithinsomerangeofthevariables.However,allsystemsultimatelybecomenonlinearasthevariablesareincreasedwithoutlimit.Asystemisdefinedaslinearintermsofthesystemexcitationandresponse.Keywords:
operatingpoint;small-signalconditions;Taylorseries;continuous;linearapproximation88Therelationshipoftwovariableswrittenas,wheref(x)indicatesyisafunctionofx.Thenormaloperatingpointisdesignatedbyx0.Becausethecurve(function)iscontinuousovertherangeofinterest,aTaylorseriesexpansionabouttheoperatingpointmaybeutilized.Thenwehave89Theslopeattheoperatingpoint,isagoodapproximationtothecurveoverasmallrangeof(x-x0)(smallperturbation),thedeviationfromtheoperatingpoint.Then,asareasonableapproximation,theequationcanberewrittenasthelinearequationwheremistheslopeattheoperatingpoint.9091Example2.4NonlineardifferentialequationOperatingpoint:(T0,u0)Smallchange:92Linearapproximationofdifferentialequation93Ifthedependentvariableydependsuponseveralexcitationvariables,thenthefunctionalrelationshipiswrittenas
TheTaylorseriesexpansionabouttheoperatingpointx0(x10,x20,…,xn0)isusefulforalinearapproximationtothenonlinearfunction.Whenthehigher-ordertermsareneglected,thelinearapproximationiswrittenasReturn942.2.3Thedifferentialequations
ofcomplexplantsGenerallysteps:
(1)ConfirmtheI/Ovariablesofsystemandeverycomponents;(2)Writethedynamicsequationsofeverycomponentsusingphysicallaws;(3)Checkupthenumberofequationsanddecideifitisequaltothenumberofunknownvariablesornot.(4)Expurgatetheinsidevariablesfromthesetofthedifferentialequations,andchangetothestandardform.95
Example2.5Servo-system
Workprinciple:Twosamechangeableresistoraresuppliedbythesamedcelectricalsource;Thearmofresistor1canrotatebyhandle3.Supposingψ、φrepresentthepositionofthearmofthetworesistorsrespectively.Ifψisnotequaltoφ,thentheerrorsignalup
isformed,whichbeamplifiedby4,finallythefieldcurrentIfofthedcdynamotor’sfieldwindingisformed,whichleadtothevoltage’schangeofdynamotor5.Sothedcmotor8rotates,whichleadtotheload10rotatestoobythegear9.Sothearmofresistor2startstomove,asfarasψ=φ.96up97Writeoutdynamicsequationsofeverycomponents:(1)thesetofchangeableresistances:Inputs:ψ,φ;output:up
(1)Wherekdisthecoefficientoftheresistance.(2)amplifier:Input:up,output:If
;
or(2)
wherekaisthemagnifiedmultipleofvoltage;Rfisthesumresistanceofoutputcircuit;Lfisinductanceoffieldwinding6;Tf=Lf/Rf
isthetimeconstantoffieldcircuit.98(3)dynamotor-motor:Input:If
;output:Ω.Fromexample2.2:
(3)(4)driveinstitution:Input:Ω;output:φ.
(4)
wherektisthedriveratioofthedriveinstitution.99Equation(1)~(4)arethemathematicsmodelsoftheservo-system.Itconsistsofonesecond-orderdifferentialequation,twofirst-orderdifferentialequationsandonealgebraicequation.Therearesixvariablessuchasψ、φ、
up、
If
、
ML、Ω.Tothewholesystem,theinputsareψand
ML,othersaretheinsidedependentvariables,andthenumberisequaltothenumberoftheequations.Return1002.2.4
Scalardifferentialequation’s
derivationoforiginalequations
Return(1)ConfirmtheI/Ovariablesofsystemandeverycomponents;(2)Writethedynamicsequationsofeverycomponentsusingphysicallaws;(3)Checkupthenumberofequationsanddecideifitisequaltothenumberofunknownvariablesornot.(4)Expurgatetheinsidevariablesfromthesetofthedifferentialequations,andchangetothestandardform.1012.2.5
Dynamicsequation
ofdiscrete-timesystem
Thediscrete-timeapproximationisbasedonthedivisionofthetimeaxisintosufficientlysmalltimeincrements.Thevaluesoftheinput/outputareevaluatedatthesuccessivetimeintervals,thatis,t=0,T,2T,…,whereTistheincrementoftime:=T.IfthetimeincrementTissufficientlysmallcomparedwiththetimeconstantsofthesystem,thediscrete-timeserieswillbereasonablyaccurate.102Differenceequation:reflecttherelationshipoftheinputandoutputseriesattheeverysamplepointsofthediscretetimesystem.UsingTdenotesthespacebetweentwosamplingtime.
Differenceequationdescribesthemovementoftheseplants.Detailsinchapternine.103Generalbackwarddifferenceequationoflineartime-invariantsystem:ortheforwarddifferenceequation:Return1042.3Statespaceandstateequation
2.3.1Statevectorandstatespace
2.3.2Stateequationandoutputequation
2.3.3Stateequation’sderivationoforiginalequationsReturn1052.3.1StatevectorandstatespaceDynamicsystem
—asystemthatcanstoreinputinformation.Example:xF(t)mv(t)xm:
themass;a(t):
theaccelerationofmattimet;F(t):
theforceappliedtomfortime
[t0,t];v(t):thevelocityof
m
attime
t;x(t):thedisplacement
of
m.106AccordingtoNewton‘slaw,wehave:Ifwechoosex(t)andv(t)astwostatevariables,thenWherex(t0)andv(t0)aretheinitialstatesvalue.x(t0-),v(t0-)
F(t)(t>t0)_determinex(t)andv(t)candescribethebehaviorofsystemcompletely.107
State—theminimumsetofvariables(calledthestatevariables)whichatsomeinitialtimet0,togetherwiththeinputssignalu(t)fortime,sufficestodeterminethefuturebehaviorofthesystemfortime.Foradynamicsystem,thestateofasystemisdescribedintermsofasetofstatevariables[x1(t),x2(t),…,xn(t)].Example:ExpressthestateofsystemattimetExpresstheinitialstateofsystem108Statevariables—arethosevariablesthatdeterminethefuturebehaviorofasystemwhenthepresentstateofthesystemandtheexcitationsignalsareknown.
Example:
displacementx(t)andvelocity
v(t)aretwostatevariables,anyoneofthemcannotdescribethemasssystemcompletely.109
Statevector—Vector
whichconsistsofnstatevariablesthatdescribedentirelythedynamicsactionofaknownsystem.thatisdescribedas
or
Example:arestatevectorofmasssystem110Statespaceisndimensionsspacewhichtakesx1,x2…xn
as
coordinate.Themannerinwhichthestatevariableschangeasafunctionoftimemaybethoughtofasatrajectoryinndimensionalspace,calledStatespace.0xvExample:twodimensionstatespace
111
Example:
Laplace
then:1)ift≥0,u(t)isknown,andtheinitialcondition
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年公共事業(yè)領(lǐng)域投資合同
- 吊車零租賃合同范本
- 鋼釘鐵釘售賣合同
- 2025有限責(zé)任公司銀行貸款擔(dān)保合同
- 水電裝修工程合同協(xié)議書
- 2025合同模板附條件買賣契約書范本
- 高科技項(xiàng)目開發(fā)與落地合同
- 河卵石銷售合同
- 物業(yè)承包合同集合年
- 2025臨時(shí)勞務(wù)派遣合同
- 職業(yè)健康監(jiān)護(hù)評(píng)價(jià)報(bào)告編制指南
- 管理ABC-干嘉偉(美團(tuán)網(wǎng)COO)
- 基于視覺的工業(yè)缺陷檢測(cè)技術(shù)
- 軍事英語(yǔ)詞匯整理
- 家庭教育指導(dǎo)委員會(huì)章程
- DB31-T 1440-2023 臨床研究中心建設(shè)與管理規(guī)范
- 老客戶維護(hù)方案
- 高處作業(yè)安全教育培訓(xùn)講義課件
- 萬(wàn)科物業(yè)管理公司全套制度(2016版)
- 動(dòng)物檢疫技術(shù)-動(dòng)物檢疫處理(動(dòng)物防疫與檢疫技術(shù))
- 英語(yǔ)經(jīng)典口語(yǔ)1000句
評(píng)論
0/150
提交評(píng)論