高中數(shù)學必修2綜合測試題-人教A版資格考試認證_第1頁
高中數(shù)學必修2綜合測試題-人教A版資格考試認證_第2頁
高中數(shù)學必修2綜合測試題-人教A版資格考試認證_第3頁
高中數(shù)學必修2綜合測試題-人教A版資格考試認證_第4頁
高中數(shù)學必修2綜合測試題-人教A版資格考試認證_第5頁
已閱讀5頁,還剩12頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1/1高中數(shù)學必修2綜合測試題__人教A版-資格考試認證

高中數(shù)學必修2綜合測試題

試卷滿分:150分考試時間:120分鐘

卷I

(選擇題共60分)

一、選擇題(本大題共2道小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的)

1、下圖(1)所示的圓錐的俯視圖為

圖(1)

A

B

C

D

2

、直線ly30的傾斜角為

A、30;B、60;C、120;D、150。

3、邊長為a正四周體的表面積是

A

、

332;B

、;C

、a;D

2。4124

4、對于直線l:3xy60的截距,下列說法正確的是

A、在y軸上的截距是6;B、在x軸上的截距是6;

C、在x軸上的截距是3;D、在y軸上的截距是3。

5、已知a//,b,則直線a與直線b的位置關系是

A、平行;B、相交或異面;C、異面;D、平行或異面。

6、已知兩條直線l1:x2ay10,l2:x4y0,且l1//l2,則滿意條件a的值為

A、

11

;B、;C、2;D、2。

22

E,F,G,H分別是AB,BC,CD,DA的中點。7、在空間四邊形ABCD中,若ACBDa,

且AC與BD所成的角為60,則四邊形EFGH的面積為

A

、

222;B

、a;C

、;D

2。842

8、已知圓C:x2y22x6y0,則圓心P及半徑r分別為

A、圓心P1,3,半徑r10;B、圓心P

1,3,半徑r;

C、圓心P1,3,半徑r10;D、圓心P1,

3,半徑r

9、下列敘述中錯誤的是

A、若P且l,則Pl;

B、三點A,B,C確定一個平面;

C、若直線abA,則直線a與b能夠確定一個平面;D、若Al,Bl且A,B,則l。

10、兩條不平行的直線,其平行投影不行能是

A、兩條平行直線;B、一點和一條直線;

C、兩條相交直線;D、兩個點。

11、長方體的一個頂點上的三條棱長分別為3、4、5,且它的8個頂點都在同一個球面上,則這個球的表面積是

A、25;B、50;C、125;D、都不對。

12、四周體PABC中,若PAPBPC,則點P在平面ABC內的射影點O是ABC的

A、外心;B、內心;C、垂心;D、重心。

高中數(shù)學必修2綜合測試題

卷II

(非選擇題共90分)

一、選擇題(本大題共2道小題,每小題5分,共60分。在每小題給出的四個選項中,

只有一項是符合題目要求的)

二、填空題(本大題共4道小題,每小題4分,共16分。把答案填在題中橫線上)

13、圓柱的側面綻開圖是邊長分別為2a,a的矩形,則圓柱的體積為;14、命題:一條直線與已知平面相交,則面內不過該交點的直線與已知直線為異面直線。用符號表示為;15、點M2,1直線ly0的距離是16、已知a,b為直線,,,為平面,有下列三個命題:(1)a//b//,則a//b;(2)a,b,則a//b;(3)a//b,b,則a//;(4)ab,a,則b//;

其中正確命題是。

三、解答題(本大題共6道小題,共74分。解答應寫出文字說明、證明過程或演算步驟)

17、(本小題滿分12分)如下圖(2),建筑一個容積為16m,深為2m,寬為2m的長方體無蓋水池,假如池底的造價為

3

2m

120元/m2,池壁的造價為80元/m2,求水池的總造價。

18、(本小題滿分12分)如下圖(3),在四棱錐PABCD中,

2m

圖(2)

四邊形ABCD是平行四邊形,M,N分別是AB,PC的中點,

求證:MN//平面PAD。A

M

B

C

P

圖(3)

19、(本小題滿分12分)如下圖(4),在正方體ABCDA1BC11D1中,(1)畫出二面角AB1CC1的平面角;(2)求證:面BB1DD1面ABC1

D

C

A

B

D1

C1

A1

圖(4)

B1

20、(本小題滿分12分)光線自點M2,3射到點N1,0后被x軸反射,求該光線及反射光線所在的直線方程。(請用直線的一般方程表示解題結果)

21、(本小題滿分12分)已知三角形ABC的三個頂點是A4,0,B6,7,C0,8(1)求BC邊上的高所在直線的方程;(2)求BC邊上的中線所在直線的方程。

22、(本小題滿分14分)如下圖(5),在三棱錐ABCD中,O,E分別是BD,BC的中點,

CACBCDBD

2,ABAD

(1)求證:AO平面BCD;

(2)求異面直線AB與CD所成角的余弦值;(3)求點E到平面ACD的距離。B

O

E

C

圖(5)

高中數(shù)學必修2綜合測試題

(答案卷)

一、選擇題(本大題共2道小題,每小題5分,共60分。在每小題給出的四個選項中,

只有一項是符合題目要求的)

二、填空題(本大題共4道小題,每小題4分,共16分。把答案填在題中橫線上)

a3

13或;14、aP,b,且Pb,則a與b互為異面直線;

2

a3

15、

1

;16、(2)。2

三、解答題(本大題共6道小題,共74分。解答應寫出文字說明、證明過程或演算步驟)

17、(本小題滿分12分)如下圖(2),建筑一個容積為16m,深為2m,寬為2m的長方體無蓋水池,假如池底的造價為120元/m,池壁的造價為80元/m,求水池的總造價。

解:分別設長、寬、高為am,bm,hm;水池的總造價為y元

2

2

3

2m

Vabh16,h2,b2,

a4m—————————————3分

2m

則有S底428m————————6分

2

圖(2)

S壁224224m2—————9分

yS底120S壁80120880242880(元)————————————12分

18、(本小題滿分12分)如下圖(3),在四棱錐PABCD中,四邊形ABCD是平行四邊形,

M,N分別是AB,PC的中點,求證:MN//平面PAD。

P

證明:如圖,取PD中點為E,連接AE,EN———1分

C

E,N分別是PD,PC的中點

EN//

1

DC———————————————4分2

1

M是AB的中點AM//DC——————7分

2

EN//AM四邊形AMNE為平行四邊形—9分

AE//MN———————————————11分

AE面APDMN面APD//平面PADMN?!?2分

19、(本小題滿分12分)如下圖(4),在正方體ABCDA1BC11D1中,

DC

(1)畫出二面角AB1CC1的平面角;(2)求證:面BB1DD1面ABC1

A

B

解:(1)如圖,取B1C的中點E,連接AE,EC1。

E

AC,AB1,B1C分別為正方形的對角線

D1

C1

ACAB1B1C

E是B1C的中點

A1

圖(4)

B1

AEB1C——————————————2

在正方形BB1C1C中

EC1BC1——————————————3分

AEC1為二面角AB1CC1的平面角?!?分

(2)證明:又

—————6分D1D面ABCD,AC面ABCDD1DAC

在正方形ABCD中ACBD—————————————————8分

D1DBDDAC面DD1B1B———————————————10分

AC面ABC1面BB1——————————————12分1DD1面ABC

20、(本小題滿分12分)光線自點M2,3射到點N1,0后被x軸反射,求該光線及反射光線所在的直線方程。(請用直線的一般方程表示解題結果)

解:如圖,設入射光線與反射光線分別為l1與l2,

Ml1,Nl1

由直線的兩點式方程可知:

l1:

y030

——3分x121

化簡得:l1:3xy30——————4分其中k13,由光的反射原理可知:12k2k13,又

Nl2—————8分

由直線的點斜式方程可知:

l2:y03x1—————————————————————————10分

化簡得:l2:3xy30——————————————————————12分21、(本小題滿分12分)已知三角形ABC的三個頂點是A4,0,B6,7,C0,8(1)求BC邊上的高所在直線的方程;(2)求BC邊上的中線所在直線的方程。解:(1)如圖,作直線ADBC,垂足為點D。

kBC

781

—————2分606

BCADkAD

1

64分kBC

由直線的點斜式方程可知直線AD的方程為:

y06x4

化簡得:y6x24——6分

(2)如圖,取BC的中點Ex0,y0,連接AE。

06

x30152

由中點坐標公式得,即點E3,———————————9分

2y8715

022

150

y0由直線的兩點式方程可知直線AE——————————11分

x430

5

化簡得:yx10——————————————————————————12分

2

22、(本小題滿分14分)如下圖(5),在三棱錐ABCD中,O,E分別是BD,BC的中點,

CACBCDBD

2,ABAD

(1)求證:AO平面BCD;(2)求異面直線AB與BC所成角的余弦值;(3)求點E到平面ACD的距離。

(1)證明:連接OC

BODO,ABAD

AOBD———————————1分

BODO,BCCD

COBD—————————————2

O

B

E

C分

在AOC

中,由已知可得:AO1,CO而AC2,AO2CO2AC2

圖(5)

AOC90,即AOOC———————4分

BDOCOAO平面BCD——————————————————5分

(2)解:取AC的中點M,連接

A

OM,ME,OE

由E為BC的中點知

MME//AB,OE//DC

直線OE與EM所成的銳角就是異面直線

AB與CD所成的角?!?分

C

在OME中

,EM

B

E

圖(5)

OE

1AB,22

1

DC

12

OM是RtAOC斜邊AC上的中線

1

OMAC1——————————————————————————8分

2

cosOEM

———————————————————————————1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論