版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
四川省威遠(yuǎn)縣龍會中學(xué)2024屆高一數(shù)學(xué)第二學(xué)期期末監(jiān)測模擬試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.設(shè)向量,,則向量與的夾角為()A. B. C. D.2.已知甲、乙兩組數(shù)據(jù)用莖葉圖表示如圖所示,若它們的中位數(shù)相同,平均數(shù)也相同,則圖中的的比值等于A. B. C. D.3.已知是常數(shù),如果函數(shù)的圖像關(guān)于點(diǎn)中心對稱,那么的最小值為()A. B. C. D.4.已知向量,,,則()A. B. C. D.5.用表示不超過的最大整數(shù)(如,).數(shù)列滿足,若,則的所有可能值的個(gè)數(shù)為()A.1 B.2 C.3 D.46.若圓上有且僅有兩點(diǎn)到直線的距離等于1,則實(shí)數(shù)r的取值范圍為()A. B. C. D.7.如圖,平面ABCD⊥平面EDCF,且四邊形ABCD和四邊形EDCF都是正方形,則異面直線BD與CE所成的角為()A. B. C. D.8.在中,、、分別是角、、的對邊,若,則的形狀是()A.等腰三角形 B.鈍角三角形 C.直角三角形 D.銳角三角形9.函數(shù)y=2cosx-1A.2,-2 B.1,-3 C.1,-1 D.2,-110.奇函數(shù)在上單調(diào)遞減,且,則不等式的解集是().A. B.C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.的內(nèi)角A,B,C的對邊分別為a,b,c.已知bsinA+acosB=0,則B=___________.12.已知等差數(shù)列中,其前項(xiàng)和為,且,,當(dāng)取最大值時(shí),的值等于_____.13.執(zhí)行如圖所示的程序框圖,則輸出的S的值是______.14.?dāng)?shù)列滿足,則等于______.15.已知呈線性相關(guān)的變量,之間的關(guān)系如下表所示:由表中數(shù)據(jù),得到線性回歸方程,由此估計(jì)當(dāng)為時(shí),的值為______.16.若,則__________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.如圖,已知點(diǎn)P在圓柱OO1的底面⊙O上,分別為⊙O、⊙O1的直徑,且平面.(1)求證:;(2)若圓柱的體積,①求三棱錐A1﹣APB的體積.②在線段AP上是否存在一點(diǎn)M,使異面直線OM與所成角的余弦值為?若存在,請指出M的位置,并證明;若不存在,請說明理由.18.記為數(shù)列的前項(xiàng)和,且滿足.(1)求數(shù)列的通項(xiàng)公式;(2)記,求滿足等式的正整數(shù)的值.19.在平面直角坐標(biāo)系中,以軸為始邊,作兩個(gè)角,它們終邊分別經(jīng)過點(diǎn)和,其中,,且.(1)求的值;(2)求的值.20.已知圓:.(Ⅰ)求過點(diǎn)的圓的切線方程;(Ⅱ)設(shè)圓與軸相交于,兩點(diǎn),點(diǎn)為圓上異于,的任意一點(diǎn),直線,分別與直線交于,兩點(diǎn).(?。┊?dāng)點(diǎn)的坐標(biāo)為時(shí),求以為直徑的圓的圓心坐標(biāo)及半徑;(ⅱ)當(dāng)點(diǎn)在圓上運(yùn)動時(shí),以為直徑的圓被軸截得的弦長是否為定值?請說明理由.21.設(shè)函數(shù)(1)若對于一切實(shí)數(shù)恒成立,求的取值范圍;(2)若對于恒成立,求的取值范圍.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、C【解題分析】
由條件有,利用公式可求夾角.【題目詳解】,.又又向量與的夾角的范圍是向量與的夾角為.故選:C2、A【解題分析】
從莖葉圖提取甲、乙兩組數(shù)據(jù)中的原始數(shù)據(jù),并按從小到大排列,分別得到中位數(shù),并計(jì)算各自的平均數(shù),再根據(jù)中位數(shù)、平均值相等得到關(guān)于的方程.【題目詳解】甲組數(shù)據(jù):,中位數(shù)為,乙組數(shù)據(jù):,中位數(shù)為:,所以,所以,故選A.【題目點(diǎn)撥】本題考查中位數(shù)、平均數(shù)的概念與計(jì)算,對甲組數(shù)據(jù)排序時(shí),一定是最大,乙組數(shù)據(jù)中一定是最小.3、C【解題分析】
將點(diǎn)的坐標(biāo)代入函數(shù)的解析式,得出,求出的表達(dá)式,可得出的最小值.【題目詳解】由于函數(shù)的圖象關(guān)于點(diǎn)中心對稱,則,,則,因此,當(dāng)時(shí),取得最小值,故選C.【題目點(diǎn)撥】本題考查余弦函數(shù)的對稱性,考查初相絕對值的最小值,解題時(shí)要結(jié)合題中條件求出初相的表達(dá)式,結(jié)合表達(dá)式進(jìn)行計(jì)算,考查分析問題和解決問題的能力,屬于中等題.4、D【解題分析】
利用平面向量垂直的坐標(biāo)等價(jià)條件列等式求出實(shí)數(shù)的值.【題目詳解】,,,,解得,故選D.【題目點(diǎn)撥】本題考查向量垂直的坐標(biāo)表示,解題時(shí)將向量垂直轉(zhuǎn)化為兩向量的數(shù)量積為零來處理,考查計(jì)算能力,屬于基礎(chǔ)題.5、C【解題分析】
數(shù)列取倒數(shù),利用累加法得到通項(xiàng)公式,再判斷的所有可能值.【題目詳解】兩邊取倒數(shù):利用累加法:為遞增數(shù)列.計(jì)算:,整數(shù)部分為0,整數(shù)部分為1,整數(shù)部分為2的所有可能值的個(gè)數(shù)為0,1,2答案選C【題目點(diǎn)撥】本題考查了累加法求數(shù)列和,綜合性強(qiáng),意在考查學(xué)生對于新知識的閱讀理解能力,解決問題的能力,和計(jì)算能力.6、B【解題分析】因?yàn)閳A心(5,1)到直線4x+3y+2=0的距離為=5,又圓上有且僅有兩點(diǎn)到直線4x+3y+2=0的距離為1,則4<r<6.選B.點(diǎn)睛:判斷直線與圓的位置關(guān)系的常見方法(1)幾何法:利用d與r的關(guān)系.(2)代數(shù)法:聯(lián)立方程之后利用Δ判斷.(3)點(diǎn)與圓的位置關(guān)系法:若直線恒過定點(diǎn)且定點(diǎn)在圓內(nèi),可判斷直線與圓相交.上述方法中最常用的是幾何法,點(diǎn)與圓的位置關(guān)系法適用于動直線問題.7、C【解題分析】
以D為原點(diǎn),DA為x軸,DC為y軸,DE為z軸,建立空間直角坐標(biāo)系,利用向量法能求出異面直線BD與CE所成的角.【題目詳解】∵平面ABCD⊥平面EDCF,且四邊形ABCD和四邊形EDCF都是正方形,∴以D為原點(diǎn),DA為x軸,DC為y軸,DE為z軸,建立空間直角坐標(biāo)系,設(shè)AB=1,則B(1,1,0),D(0,0,0),C(0,1,0),E(0,0,1),(﹣1,﹣1,0),(0,﹣1,1),設(shè)異面直線BD與CE所成的角為θ,則cosθ,∴θ.∴異面直線BD與CE所成的角為.故選:C.【點(diǎn)評】本題考查異面直線所成角的求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查運(yùn)算求解能力,是基礎(chǔ)題.8、A【解題分析】
由正弦定理和,可得,在利用三角恒等變換的公式,化簡得,即可求解.【題目詳解】在中,由正弦定理,由,可得,又由,則,即,即,解得,所以為等腰三角形,故選A.【題目點(diǎn)撥】本題主要考查了正弦定理的應(yīng)用,以及三角形形狀的判定,其中解答中熟練應(yīng)用正弦定理的邊角互化,合理利用三角恒等變換的公式化簡是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.9、B【解題分析】
根據(jù)余弦函數(shù)有界性確定最值.【題目詳解】因?yàn)?1≤cosx≤1,所以【題目點(diǎn)撥】本題考查余弦函數(shù)有界性以及函數(shù)最值,考查基本求解能力,屬基本題.10、A【解題分析】
因?yàn)楹瘮?shù)式奇函數(shù),在上單調(diào)遞減,根據(jù)奇函數(shù)的性質(zhì)得到在上函數(shù)仍是減函數(shù),再根據(jù)可畫出函數(shù)在上的圖像,根據(jù)對稱性畫出在上的圖像.根據(jù)圖像得到的解集是:.故選A.二、填空題:本大題共6小題,每小題5分,共30分。11、.【解題分析】
先根據(jù)正弦定理把邊化為角,結(jié)合角的范圍可得.【題目詳解】由正弦定理,得.,得,即,故選D.【題目點(diǎn)撥】本題考查利用正弦定理轉(zhuǎn)化三角恒等式,滲透了邏輯推理和數(shù)學(xué)運(yùn)算素養(yǎng).采取定理法,利用轉(zhuǎn)化與化歸思想解題.忽視三角形內(nèi)角的范圍致誤,三角形內(nèi)角均在范圍內(nèi),化邊為角,結(jié)合三角函數(shù)的恒等變化求角.12、或【解題分析】
設(shè)等差數(shù)列的公差為,由可得出與的等量關(guān)系,然后求出的表達(dá)式,解不等式,即可得出使得取得最大值的正整數(shù)的值.【題目詳解】設(shè)等差數(shù)列的公差為,由,可得,可得,,令,即,,解得.因此,當(dāng)或時(shí),取得最大值.故答案為:或.【題目點(diǎn)撥】本題考查等差數(shù)列前項(xiàng)和的最大值的求解,可利用二次函數(shù)的基本性質(zhì)來求,也可以轉(zhuǎn)化為等差數(shù)列所有的非負(fù)項(xiàng)之和的問題求解,考查化歸與轉(zhuǎn)化思想,屬于中等題.13、4【解題分析】
模擬程序運(yùn)行,觀察變量值的變化,尋找到規(guī)律周期性,確定輸出結(jié)果.【題目詳解】第1次循環(huán):,;第2次循環(huán):,;第3次循環(huán):,;第4次循環(huán):,;…;S關(guān)于i以4為周期,最后跳出循環(huán)時(shí),此時(shí).故答案為:4.【題目點(diǎn)撥】本題考查程序框圖,考查循環(huán)結(jié)構(gòu).解題關(guān)鍵是由程序確定變量變化的規(guī)律:周期性.14、15【解題分析】
先由,可求出,然后由,代入已知遞推公式即可求解。【題目詳解】故答案為15.【題目點(diǎn)撥】本題考查是遞推公式的應(yīng)用,是一道基礎(chǔ)題。15、【解題分析】由表格得,又線性回歸直線過點(diǎn),則,即,令,得.點(diǎn)睛:本題考查線性回歸方程的求法和應(yīng)用;求線性回歸方程是??嫉幕A(chǔ)題型,其主要考查線性回歸方程一定經(jīng)過樣本點(diǎn)的中心,一定要注意這一點(diǎn),如本題中利用線性回歸直線過中心點(diǎn)求出的值.16、;【解題分析】
易知的周期為,從而化簡求得.【題目詳解】的周期為,且,又,.故答案為:【題目點(diǎn)撥】本題考查了正弦型函數(shù)的周期以及利用周期求函數(shù)值,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)①,②見解析【解題分析】
(1)根據(jù),得出平面,故而;(2)①根據(jù)圓柱的體積計(jì)算,根據(jù)計(jì)算,,代入體積公式計(jì)算棱錐的體積;②先證明就是異面直線與所成的角,然后根據(jù)可得,故為的中點(diǎn).【題目詳解】(1)證明:∵P在⊙O上,AB是⊙O的直徑,平面又,平面,又平面,故.(2)①由題意,解得,由,得,,∴三棱錐的體積.②在AP上存在一點(diǎn)M,當(dāng)M為AP的中點(diǎn)時(shí),使異面直線OM與所成角的余弦值為.證明:∵O、M分別為的中點(diǎn),則,就是異面直線OM與所成的角,又,在中,.∴在AP上存在一點(diǎn)M,當(dāng)M為AP的中點(diǎn)時(shí),使異面直線OM與所成角的余弦值為.【題目點(diǎn)撥】本題主要考查了線面垂直的判定與性質(zhì),棱錐的體積計(jì)算以及異面直線所成的角,屬于中檔題.18、(1);(2)【解題分析】
(1)首先利用數(shù)列的遞推關(guān)系式求出數(shù)列的通項(xiàng)公式;(2)先求出,再利用裂項(xiàng)相消法求出數(shù)列的和,解出即可.【題目詳解】(1)由為數(shù)列的前項(xiàng)和,且滿足.當(dāng)時(shí),,得.當(dāng)時(shí),,得,所以數(shù)列是以2為首項(xiàng),以為公比的等比數(shù)列,則數(shù)列的通項(xiàng)公式為.(2)由,得由,解得.【題目點(diǎn)撥】本題考查了等比數(shù)列的通項(xiàng)公式的求法,裂項(xiàng)相消法求數(shù)列的和,屬于基礎(chǔ)題.19、(1);(2).【解題分析】
(1)根據(jù)正弦的定義求得,再運(yùn)用余弦的二倍角公式求解,(2)由(1)問可得、兩點(diǎn)的坐標(biāo),從而再運(yùn)用正切的和角公式求解.【題目詳解】(1)由得:所以:(2)由則故因此.【題目點(diǎn)撥】本題考查三角函數(shù)的定義和余弦的二倍角公式和正切的和角公式,屬于基礎(chǔ)題.20、(Ⅰ)或;(Ⅱ)(ⅰ)圓心為,半徑;(ⅱ)見解析【解題分析】
(Ⅰ)先判斷在圓外,所以圓過點(diǎn)的切線有兩條.再由斜率是否存在分別討論.(Ⅱ)(ⅰ)設(shè)直線PA和PB把其與直線交于,兩點(diǎn)表示出來,寫出圓的方程化簡即可.(ⅱ)先求出以為直徑的圓被軸截得的弦長,在設(shè)出PA和PB的直線方程,分別求出與直線的交點(diǎn),求出圓心,再根據(jù)勾股定理易求解.【題目詳解】(Ⅰ)因?yàn)辄c(diǎn)在圓外,所以圓過點(diǎn)的切線有兩條.當(dāng)直線的斜率不存在時(shí),直線方程為,滿足條件.當(dāng)直線的斜率存在時(shí),可設(shè)為,即.由圓心到切線的距離,解得.此時(shí)切線方程為.綜上,圓的切線方程為或.(Ⅱ)因?yàn)閳A與軸相交于,兩點(diǎn),所以,.(?。┊?dāng)點(diǎn)坐標(biāo)為時(shí),直線的斜率為,直線的方程為.直線與直線的交點(diǎn)坐標(biāo)為,同理直線的斜率為,直線的方程為.直線與直線的交點(diǎn)坐標(biāo)為.所以以為直徑的圓的圓心為,半徑.(ⅱ)以為直徑的圓被軸截得的弦長為定值.設(shè)點(diǎn),則.直線的斜率為,直線的方程為.直線與直線的交點(diǎn)坐標(biāo)為.同理直線的斜率為,直線的方程為.直線與直線的交點(diǎn)坐標(biāo)為.所以圓的圓心,半徑為.方法一:圓被軸截得的弦長為.所以以為直徑的圓被軸截得的弦長為定值.方法二:圓的方程為.令,解得.所以.所以圓與軸的交點(diǎn)坐標(biāo)分別為,.所以以為直徑的圓被軸截得的弦長為定值.【題目點(diǎn)撥】此題考查解析幾何中關(guān)于圓的題目,一般做法是設(shè)而不求,將需要的信息表示出來再化簡求值,屬于一般性題目.21、(1)(2)【解題分析】
(1)由不等式恒成
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 沈陽理工大學(xué)《化工設(shè)計(jì)基礎(chǔ)》2023-2024學(xué)年第一學(xué)期期末試卷
- 沈陽理工大學(xué)《電路》2022-2023學(xué)年期末試卷
- 沈陽理工大學(xué)《產(chǎn)品調(diào)研方法》2022-2023學(xué)年第一學(xué)期期末試卷
- 歸還租賃押金合同范本
- 貴州總承包合同條款
- 合肥研究院研究生公寓租住協(xié)議書
- 輔警體測標(biāo)準(zhǔn)
- 2024空氣凈化器設(shè)備租賃合同模板
- 2024服裝加盟合同范本
- 沈陽理工大學(xué)《EDA技術(shù)與VHD語言》2022-2023學(xué)年期末試卷
- 2024-2030年中國肉牛養(yǎng)殖產(chǎn)業(yè)前景預(yù)測及投資效益分析報(bào)告權(quán)威版
- 河北省石家莊市長安區(qū)2023-2024學(xué)年五年級上學(xué)期期中英語試卷
- 品牌經(jīng)理招聘筆試題及解答(某大型國企)2025年
- 多能互補(bǔ)規(guī)劃
- 珍愛生命主題班會
- 《網(wǎng)絡(luò)數(shù)據(jù)安全管理?xiàng)l例》課件
- 消除“艾梅乙”醫(yī)療歧視-從我做起
- 天一大聯(lián)考●皖豫名校聯(lián)盟2024-2025學(xué)年高三上學(xué)期10月月考試卷語文答案
- 八年級歷史上冊(部編版)第六單元中華民族的抗日戰(zhàn)爭(大單元教學(xué)設(shè)計(jì))
- 全國農(nóng)業(yè)技術(shù)推廣服務(wù)中心公開招聘應(yīng)屆畢業(yè)生補(bǔ)充(北京)高頻難、易錯(cuò)點(diǎn)500題模擬試題附帶答案詳解
- 公司研發(fā)項(xiàng)目審核管理制度
評論
0/150
提交評論