![2024屆江蘇省揚州市梅嶺中學(xué)高一數(shù)學(xué)第二學(xué)期期末綜合測試試題含解析_第1頁](http://file4.renrendoc.com/view10/M00/11/2D/wKhkGWWlZcmAVYq0AAI6fKlZUBI789.jpg)
![2024屆江蘇省揚州市梅嶺中學(xué)高一數(shù)學(xué)第二學(xué)期期末綜合測試試題含解析_第2頁](http://file4.renrendoc.com/view10/M00/11/2D/wKhkGWWlZcmAVYq0AAI6fKlZUBI7892.jpg)
![2024屆江蘇省揚州市梅嶺中學(xué)高一數(shù)學(xué)第二學(xué)期期末綜合測試試題含解析_第3頁](http://file4.renrendoc.com/view10/M00/11/2D/wKhkGWWlZcmAVYq0AAI6fKlZUBI7893.jpg)
![2024屆江蘇省揚州市梅嶺中學(xué)高一數(shù)學(xué)第二學(xué)期期末綜合測試試題含解析_第4頁](http://file4.renrendoc.com/view10/M00/11/2D/wKhkGWWlZcmAVYq0AAI6fKlZUBI7894.jpg)
![2024屆江蘇省揚州市梅嶺中學(xué)高一數(shù)學(xué)第二學(xué)期期末綜合測試試題含解析_第5頁](http://file4.renrendoc.com/view10/M00/11/2D/wKhkGWWlZcmAVYq0AAI6fKlZUBI7895.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2024屆江蘇省揚州市梅嶺中學(xué)高一數(shù)學(xué)第二學(xué)期期末綜合測試試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.設(shè),則“數(shù)列為等比數(shù)列”是“數(shù)列滿足”的()A.充分非必要條件 B.必要非充分條件C.充要條件 D.既非充分也非必要條件2.一個不透明袋中裝有大小?質(zhì)地完成相同的四個球,四個球上分別標(biāo)有數(shù)字2,3,4,6,現(xiàn)從中隨機選取三個球,則所選三個球上的數(shù)字能構(gòu)成等差數(shù)列(如:??成等差數(shù)列,滿足)的概率是()A. B. C. D.3.將函數(shù)的圖像先向右平移個單位,再將所得的圖像上每個點的橫坐標(biāo)變?yōu)樵瓉淼谋?,得到的圖像,則的可能取值為()A. B. C. D.4.集合,,則中元素的個數(shù)為()A.0 B.1 C.2 D.35.設(shè)為等比數(shù)列,給出四個數(shù)列:①,②,③,④.其中一定為等比數(shù)列的是()A.①③ B.②④ C.②③ D.①②6.已知在三角形中,,點都在同一個球面上,此球面球心到平面的距離為,點是線段的中點,則點到平面的距離是()A. B. C. D.17.在等比數(shù)列中,成等差數(shù)列,則公比等于()A.1
或
2 B.?1
或
?2 C.1
或
?2 D.?1
或
28.如圖,在中,,,若,則()A. B. C. D.9.若角α的終邊經(jīng)過點P(-1,1A.sinα=1C.cosα=210.已知數(shù)列是首項為,公差為的等差數(shù)列,若,則()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.若一個圓錐的高和底面直徑相等且它的體積為,則此圓錐的側(cè)面積為______.12.已知a、b為不垂直的異面直線,α是一個平面,則a、b在α上的射影有可能是:①兩條平行直線;②兩條互相垂直的直線;③同一條直線;④一條直線及其外一點.在上面結(jié)論中,正確結(jié)論的編號是________.(寫出所有正確結(jié)論的編號)13.直線與間的距離為________.14.方程在上的解集為______.15.等差數(shù)列{}前n項和為.已知+-=0,=38,則m=_______.16.若,則=_________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.在平面直角坐標(biāo)系xOy中,曲線與x軸交于不同的兩點A,B,曲線Γ與y軸交于點C.(1)是否存在以AB為直徑的圓過點C?若存在,求出該圓的方程;若不存在,請說明理由;(2)求證:過A,B,C三點的圓過定點,并求出該定點的坐標(biāo).18.已知數(shù)列的前項和為,且,.(1)求數(shù)列的通項公式;(2)已知,記(且),是否存在這樣的常數(shù),使得數(shù)列是常數(shù)列,若存在,求出的值;若不存在,請說明理由;(3)若數(shù)列,對于任意的正整數(shù),均有成立,求證:數(shù)列是等差數(shù)列.19.在中,、、分別是內(nèi)角、、的對邊,且.(1)求角的大??;(2)若,的面積為,求的周長.20.已知cosα=,sin(α-β)=,且α,β∈(0,).求:(1)cos(α-β)的值;(2)β的值.21.已知數(shù)列{}的首項.(1)求證:數(shù)列為等比數(shù)列;(2)記,若,求最大正整數(shù).
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、A【解題分析】
“數(shù)列為等比數(shù)列”,則,數(shù)列滿足.反之不能推出,可以舉出反例.【題目詳解】解:“數(shù)列為等比數(shù)列”,則,數(shù)列滿足.充分性成立;反之不能推出,例如,數(shù)列滿足,但數(shù)列不是等比數(shù)列,即必要性不成立;故“數(shù)列為等比數(shù)列”是“數(shù)列滿足”的充分非必要條件故選:.【題目點撥】本題考查了等比數(shù)列的定義、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.2、B【解題分析】
用列舉法寫出所有基本事件,確定成等差數(shù)列含有的基本事件,計數(shù)后可得概率.【題目詳解】任取3球,結(jié)果有234,236,246,346共4種,其中234,246是成等差數(shù)列的2個基本事件,∴所求概率為.故選:B.【題目點撥】本題考查古典概型,解題時可用列舉法列出所有的基本事件.3、D【解題分析】由題意結(jié)合輔助角公式有:,將函數(shù)的圖像先向右平移個單位,所得函數(shù)的解析式為:,再將所得的圖像上每個點的橫坐標(biāo)變?yōu)樵瓉淼谋叮煤瘮?shù)的解析式為:,而,據(jù)此可得:,據(jù)此可得:.本題選擇D選項.4、C【解題分析】,則,所以,元素個數(shù)為2個。故選C。5、D【解題分析】
設(shè),再利用等比數(shù)列的定義和性質(zhì)逐一分析判斷每一個選項得解.【題目詳解】設(shè),①,,所以數(shù)列是等比數(shù)列;②,,所以數(shù)列是等比數(shù)列;③,不是一個常數(shù),所以數(shù)列不是等比數(shù)列;④,不是一個常數(shù),所以數(shù)列不是等比數(shù)列.故選D【題目點撥】本題主要考查等比數(shù)列的判定,意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.6、D【解題分析】
利用數(shù)形結(jié)合,計算球的半徑,可得半徑為2,進一步可得該幾何體為正四面體,可得結(jié)果.【題目詳解】如圖據(jù)題意可知:點都在同一個球面上可知為的外心,故球心必在過且垂直平面的垂線上因為,所以球心到平面的距離為即,又所以同理可知:所以該幾何體為正四面體,由點是線段的中點所以,且平面,故平面所以點到平面的距離是故選:D【題目點撥】本題考查空間幾何體的應(yīng)用,以及點到面的距離,本題難點在于得到該幾何體為正四面體,屬中檔題.7、C【解題分析】
設(shè)出基本量,利用等比數(shù)列的通項公式,再利用等差數(shù)列的中項關(guān)系,即可列出相應(yīng)方程求解【題目詳解】等比數(shù)列中,設(shè)首項為,公比為,成等差數(shù)列,,即,或答案選C【題目點撥】本題考查等差數(shù)列和等比數(shù)列求基本量的問題,屬于基礎(chǔ)題8、B【解題分析】∵∴又,∴故選B.9、B【解題分析】
利用三角函數(shù)的定義可得α的三個三角函數(shù)值后可得正確的選項.【題目詳解】因為角α的終邊經(jīng)過點P-1,1,故r=OP=所以sinα=【題目點撥】本題考查三角函數(shù)的定義,屬于基礎(chǔ)題.10、C【解題分析】
本題首先可根據(jù)首項為以及公差為求出數(shù)列的通項公式,然后根據(jù)以及數(shù)列的通項公式即可求出答案.【題目詳解】因為數(shù)列為首項,公差的等差數(shù)列,所以,因為所以,,故選C.【題目點撥】本題考查如何判斷實數(shù)為數(shù)列中的哪一項,主要考查等差數(shù)列的通項公式的求法,等差數(shù)列的通項公式為,考查計算能力,是簡單題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】
先由圓錐的體積公式求出圓錐的底面半徑,再結(jié)合圓錐的側(cè)面積公式求解即可.【題目詳解】解:設(shè)圓錐的底面半徑為,則圓錐的高為,母線長為,由圓錐的體積為,則,即,則此圓錐的側(cè)面積為.故答案為:.【題目點撥】本題考查了圓錐的體積公式,重點考查了圓錐的側(cè)面積公式,屬基礎(chǔ)題.12、①②④【解題分析】用正方體ABCD-A1B1C1D1實例說明A1D1與BC1在平面ABCD上的投影互相平行,AB1與BC1在平面ABCD上的投影互相垂直,BC1與DD1在平面ABCD上的投影是一條直線及其外一點.故①②④正確.13、【解題分析】
根據(jù)兩平行線間的距離,,代入相應(yīng)的數(shù)據(jù),整理計算得到答案.【題目詳解】因為直線與互相平行,所以根據(jù)平行線間的距離公式,可以得到它們之間的距離,.【題目點撥】本題考查兩平行線間的距離公式,屬于簡單題.14、【解題分析】
由求出的取值范圍,由可得出的值,從而可得出方程在上的解集.【題目詳解】,,由,得.,解得,因此,方程在上的解集為.故答案為:.【題目點撥】本題考查正切方程的求解,解題時要求出角的取值范圍,考查計算能力,屬于基礎(chǔ)題.15、10【解題分析】
根據(jù)等差數(shù)列的性質(zhì),可得:+=2,又+-=0,則2=,解得=0(舍去)或=2.則,,所以m=10.16、【解題分析】
∵,∴∴=1×[+]=1.故答案為:1.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)存在,(2)證明見解析,圓方程恒過定點或【解題分析】
(1)將曲線Γ方程中的y=1,得x2﹣mx+2m=1.利用韋達定理求出C,通過坐標(biāo)化,求出m得到所求圓的方程.(2)設(shè)過A,B,C的圓P的方程為(x﹣a)2+(y﹣b)2=r2列出方程組利用圓系方程,推出圓P方程恒過定點即可.【題目詳解】由曲線Γ:y=x2﹣mx+2m(m∈R),令y=1,得x2﹣mx+2m=1.設(shè)A(x1,1),B(x2,1),則可得△=m2﹣8m>1,x1+x2=m,x1x2=2m.令x=1,得y=2m,即C(1,2m).(1)若存在以AB為直徑的圓過點C,則,得,即2m+4m2=1,所以m=1或.由△>1,得m<1或m>8,所以,此時C(1,﹣1),AB的中點M(,1)即圓心,半徑r=|CM|故所求圓的方程為.(2)設(shè)過A,B,C的圓P的方程為(x﹣a)2+(y﹣b)2=r2滿足代入P得展開得(﹣x﹣2y+2)m+x2+y2﹣y=1當(dāng),即時方程恒成立,∴圓P方程恒過定點(1,1)或.【題目點撥】本題考查圓的方程的應(yīng)用,圓系方程恒過定點的求法,考查轉(zhuǎn)化思想以及計算能力.18、(1)(2)(3)見解析【解題分析】
(1)根據(jù)和項與通項關(guān)系得,再根據(jù)等比數(shù)列定義與通項公式求解(2)先化簡,再根據(jù)恒成立思想求的值(3)根據(jù)和項得,再作差得,最后根據(jù)等差數(shù)列定義證明.【題目詳解】(1),所以,由得時,,兩式相減得,,,數(shù)列是以2為首項,公比為的等比數(shù)列,所以.(2)若數(shù)列是常數(shù)列,為常數(shù).只有,解得,此時.(3)①,,其中,所以,當(dāng)時,②②式兩邊同時乘以得,③①式減去③得,,所以,因為,所以數(shù)列是以為首項,公差為的等差數(shù)列.【題目點撥】本題考查利用和項求通項、等差數(shù)列定義以及利用恒成立思想求參數(shù),考查基本分析論證與求解能力,屬中檔題19、(1)(2)【解題分析】
(1)由正弦定理,兩角和的正弦函數(shù)公式化簡已知等式可得,由,可求,結(jié)合范圍,可求.(2)利用三角形的面積公式可求,進而根據(jù)余弦定理可得,即可計算得解的周長的值.【題目詳解】解:(1)∵,∴由正弦定理可得:,即,∵,∴,∵,∴.(2)∵,,的面積為,,∴,∴由余弦定理可得:,∴解得:,∴的周長.【題目點撥】本題主要考查了正弦定理,兩角和的正弦函數(shù)公式,三角形的面積公式,余弦定理在解三角形中的綜合應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.20、(1)【解題分析】
(1)利用同角的平方關(guān)系求cos(α-β)的值;(2)利用求出,再求的值.【題目詳解】(1)因為,所以cos(α-β).(2)因為cosα=,所以,所以,因為β∈(0,),所以.【題目點撥】本
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 三農(nóng)產(chǎn)品網(wǎng)絡(luò)營銷作業(yè)指導(dǎo)書
- 2025年懷化考從業(yè)資格證貨運試題
- 小學(xué)二年級數(shù)學(xué)上冊口算題
- 2025年武威貨運上崗證模擬考試試題
- 2025年楚雄駕??荚囏涍\從業(yè)資格證模擬考試
- 電力調(diào)試合同(2篇)
- 電動車補充協(xié)議書范文(2篇)
- 2024-2025學(xué)年高中語文課時作業(yè)4毛澤東詞兩首含解析粵教版必修2
- 六年級班主任第二學(xué)期工作總結(jié)
- 小學(xué)班主任工作計劃二年級
- 門窗安裝施工安全管理方案
- 2024年安徽省高校分類對口招生考試數(shù)學(xué)試卷真題
- ISO45001管理體系培訓(xùn)課件
- 動畫課件教學(xué)教學(xué)課件
- 會所股東合作協(xié)議書范文范本
- 綿陽市高中2022級(2025屆)高三第一次診斷性考試(一診)數(shù)學(xué)試卷(含答案逐題解析)
- 人教版(2024)七年級上冊英語期中復(fù)習(xí)單項選擇100題(含答案)
- 2024年胡麻油市場前景分析:全球胡麻油市場規(guī)模達到了25.55億美元
- 小學(xué)英語800詞分類(默寫用)
- 《 西門塔爾牛臉數(shù)據(jù)集的研究》范文
- 八年級上冊 第三單元 11《簡愛》公開課一等獎創(chuàng)新教學(xué)設(shè)計
評論
0/150
提交評論