版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆河北省邯鄲市大名縣、磁縣等六縣一中數(shù)學(xué)高一下期末綜合測(cè)試試題注意事項(xiàng)1.考生要認(rèn)真填寫考場(chǎng)號(hào)和座位序號(hào)。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無(wú)效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.設(shè),,則下列不等式成立的是()A. B. C. D.2.向量,,,滿足條件.,則A. B. C. D.3.下列敘述中,不能稱為算法的是()A.植樹需要運(yùn)苗、挖坑、栽苗、澆水這些步驟B.按順序進(jìn)行下列運(yùn)算:1+1=2,2+1=3,3+1=4,…,99+1=100C.從濟(jì)南到北京旅游,先坐火車,再坐飛機(jī)抵達(dá)D.3x>x+14.下圖所示的幾何體是由一個(gè)圓柱中挖去一個(gè)以圓柱的上底面為底面,下底面圓心為質(zhì)點(diǎn)的圓錐面得到,現(xiàn)用一個(gè)垂直于底面的平面去截該幾何體、則截面圖形可能是()A.(1)(2) B.(2)(3) C.(3)(4) D.(1)(4)5.已知向量,則與().A.垂直 B.不垂直也不平行 C.平行且同向 D.平行且反向6.已知函數(shù)的定義域?yàn)?,?dāng)時(shí),,且對(duì)任意的實(shí)數(shù),等式恒成立,若數(shù)列滿足,且,則的值為()A.4037 B.4038 C.4027 D.40287.如圖,正方體的棱長(zhǎng)為1,線段上有兩個(gè)動(dòng)點(diǎn)E、F,且,則下列結(jié)論中錯(cuò)誤的是A.B.C.三棱錐的體積為定值D.8.已知函數(shù),(),若對(duì)任意的(),恒有,那么的取值集合是()A. B. C. D.9.某城市修建經(jīng)濟(jì)適用房.已知甲、乙、丙三個(gè)社區(qū)分別有低收入家庭360戶、270戶、180戶,若首批經(jīng)濟(jì)適用房中有90套住房用于解決住房緊張問題,采用分層抽樣的方法決定各社區(qū)戶數(shù),則應(yīng)從乙社區(qū)中抽取低收入家庭的戶數(shù)為()A.40 B.36 C.30 D.2010.若,則的最小值為()A. B. C. D.二、填空題:本大題共6小題,每小題5分,共30分。11.?dāng)?shù)列滿足,當(dāng)時(shí),,則是否存在不小于2的正整數(shù),使成立?若存在,則在橫線處直接填寫的值;若不存在,就填寫“不存在”_______.12.在直角坐標(biāo)系中,直線與直線都經(jīng)過點(diǎn),若,則直線的一般方程是_____.13.若,且,則是第_______象限角.14.已知正三棱錐的底面邊長(zhǎng)為,側(cè)棱長(zhǎng)為2,則該三棱錐的外接球的表面積_____.15.記,則函數(shù)的最小值為__________.16.設(shè)等比數(shù)列滿足a1+a2=–1,a1–a3=–3,則a4=___________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知所在平面內(nèi)一點(diǎn),滿足:的中點(diǎn)為,的中點(diǎn)為,的中點(diǎn)為.設(shè),,如圖,試用,表示向量.18.已知數(shù)列的首項(xiàng),其前n項(xiàng)和為滿足.(1)數(shù)列的通項(xiàng)公式;(2)設(shè),求數(shù)列的前n項(xiàng)和表達(dá)式.19.已知函數(shù).(1)求函數(shù)的最小正周期和單調(diào)增區(qū)間;(2)求函數(shù)在區(qū)間上的最小值以及取得該最小值時(shí)的值.20.已知數(shù)列滿足,.(1)求證:數(shù)列是等比數(shù)列;(2)求數(shù)列的通項(xiàng)公式.21.如圖,正方體的棱長(zhǎng)為2,E,F(xiàn)分別為,AC的中點(diǎn).(1)證明:平面;(2)求三棱錐的體積.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、D【解題分析】試題分析:本題是選擇題,可采用逐一檢驗(yàn),利用特殊值法進(jìn)行檢驗(yàn),很快問題得以解決.解:∵a>b,c>d;∴設(shè)a=1,b=-1,c=-2,d=-5,選項(xiàng)A,1-(-2)>-1-(-5),不成立;選項(xiàng)B,1(-2)>(-1)(-5),不成立;取選項(xiàng)C,,不成立,故選D考點(diǎn):不等式的性質(zhì)點(diǎn)評(píng):本題主要考查了基本不等式,基本不等式在考綱中是C級(jí)要求,本題屬于基礎(chǔ)題2、C【解題分析】向量,則,故解得.故答案為:C。3、D【解題分析】
利用算法的定義來分析判斷各選項(xiàng)的正確與否,即可求解,得到答案.【題目詳解】由算法的定義可知,算法、程序是完成一件事情的可操作的步驟:可得A、B、C為算法,D沒有明確的規(guī)則和步驟,所以不是算法,故選D.【題目點(diǎn)撥】本題主要考查了算法的概念,其中解答的關(guān)鍵是理解算法的概念,由概念作出正確的判斷,著重考查了分析問題和解答問題的能力,屬于基礎(chǔ)題.4、D【解題分析】
根據(jù)圓錐曲線的定義和圓錐的幾何特征,分截面過旋轉(zhuǎn)軸時(shí)和截面不過旋轉(zhuǎn)軸時(shí)兩種情況,分析截面圖形的形狀,最后綜合討論結(jié)果,可得答案.【題目詳解】根據(jù)題意,當(dāng)截面過旋轉(zhuǎn)軸時(shí),圓錐的軸截面為等腰三角形,此時(shí)(1)符合條件;當(dāng)截面不過旋轉(zhuǎn)軸時(shí),圓錐的軸截面為雙曲線的一支,此時(shí)(4)符合條件;故截面圖形可能是(1)(4);故選:D.【題目點(diǎn)撥】本題考查的知識(shí)點(diǎn)是旋轉(zhuǎn)體,圓錐曲線的定義,關(guān)鍵是掌握?qǐng)A柱與圓錐的幾何特征.5、A【解題分析】
通過計(jì)算兩個(gè)向量的數(shù)量積,然后再判斷兩個(gè)向量能否寫成的形式,這樣可以選出正確答案.【題目詳解】因?yàn)椋?,所以,而不存在?shí)數(shù),使成立,因此與不共線,故本題選A.【題目點(diǎn)撥】本題考查了兩個(gè)平面向量垂直的判斷,考查了平面向量共線的判斷,考查了數(shù)學(xué)運(yùn)算能力.6、A【解題分析】
由,對(duì)任意的實(shí)數(shù),等式恒成立,且,得到an+1=an+2,由等差數(shù)列的定義求得結(jié)果.【題目詳解】∵,∴f(an+1)f(﹣2﹣an)=1,∵f(x)?f(y)=f(x+y)恒成立,∴令x=﹣1,y=0,則f(﹣1)?f(0)=f(﹣1),∵當(dāng)x<0時(shí),f(x)>1,∴f(﹣1)≠0,則f(0)=1,則f(an+1)f(﹣2﹣an)=1,等價(jià)為f(an+1)f(﹣2﹣an)=f(0),即f(an+1﹣2﹣an)=f(0),則an+1﹣2﹣an=0,∴an+1﹣an=2.∴數(shù)列{an}是以1為首項(xiàng),以2為公差的等差數(shù)列,首項(xiàng)a1=f(0)=1,∴an=1+2(n﹣1)=2n﹣1,∴=2×2019﹣1=4037.故選:A【題目點(diǎn)撥】本題主要考查數(shù)列與函數(shù)的綜合運(yùn)用,根據(jù)抽象函數(shù)的關(guān)系結(jié)合等差數(shù)列的通項(xiàng)公式建立方程是解決本題的關(guān)鍵,屬于中檔題.7、D【解題分析】可證,故A正確;由∥平面ABCD,可知,B也正確;連結(jié)BD交AC于O,則AO為三棱錐的高,,三棱錐的體積為為定值,C正確;D錯(cuò)誤。選D。8、A【解題分析】當(dāng)時(shí),,畫出圖象如下圖所示,由圖可知,時(shí)不符合題意,故選.【題目點(diǎn)撥】本題主要考查含有絕對(duì)值的不等式的解法,考查選擇題的解題策略中的特殊值法.主要的需要滿足的是,根據(jù)不等式的解法,大于在中間,小于在兩邊,可化簡(jiǎn)為,左右兩邊為二次函數(shù),中間可以由對(duì)數(shù)函數(shù)圖象平移得到,由此畫出圖象驗(yàn)證是否符合題意.9、C【解題分析】試題分析:利用分層抽樣的比例關(guān)系,設(shè)從乙社區(qū)抽取戶,則,解得.考點(diǎn):考查分層抽樣.10、D【解題分析】
根據(jù)對(duì)數(shù)運(yùn)算可求得且,,利用基本不等式可求得最小值.【題目詳解】由得:且,(當(dāng)且僅當(dāng)時(shí)取等號(hào))本題正確選項(xiàng):【題目點(diǎn)撥】本題考查利用基本不等式求解和的最小值的問題,關(guān)鍵是能夠利用對(duì)數(shù)運(yùn)算得到積的定值,屬于基礎(chǔ)題.二、填空題:本大題共6小題,每小題5分,共30分。11、70【解題分析】
構(gòu)造數(shù)列,兩式與相減可得數(shù)列{}為等差數(shù)列,求出,讓=0即可求出.【題目詳解】設(shè)兩式相減得又?jǐn)?shù)列從第5項(xiàng)開始為等差數(shù)列,由已知易得均不為0所以當(dāng)n=70的時(shí)候成立,故答案填70.【題目點(diǎn)撥】如果遞推式中出現(xiàn)和的形式,比如,可以嘗試退項(xiàng)相減,即讓取后,兩式作差,和的部分因?yàn)橄鄿p而抵消,剩下的就好算了。12、【解題分析】
點(diǎn)代入的方程求出k,再由求出直線的斜率,即可寫出直線的點(diǎn)斜式方程.【題目詳解】將點(diǎn)代入直線得,,解得,又,,于是的方程為,整理得.故答案為:【題目點(diǎn)撥】本題考查直線的方程,屬于基礎(chǔ)題.13、三【解題分析】
利用二倍角公式計(jì)算出的值,結(jié)合判斷出角所在的象限.【題目詳解】由二倍角公式得,又,因此,是第三象限角,故答案為三.【題目點(diǎn)撥】本題考查利用三角函數(shù)值的符號(hào)與角的象限之間的關(guān)系,考查了二倍角公式,對(duì)于角的象限與三角函數(shù)值符號(hào)之間的關(guān)系,充分利用“一全二正弦、三切四余弦”的規(guī)律來判斷,考查分析問題與解決問題的能力,屬于中等題.14、.【解題分析】
由題意推出球心O到四個(gè)頂點(diǎn)的距離相等,利用直角三角形BOE,求出球的半徑,即可求出外接球的表面積.【題目詳解】如圖,∵正三棱錐A﹣BCD中,底面邊長(zhǎng)為,底面外接圓半徑為側(cè)棱長(zhǎng)為2,BE=1,在三角形ABE中,根據(jù)勾股定理得到:高AE得到球心O到四個(gè)頂點(diǎn)的距離相等,O點(diǎn)在AE上,在直角三角形BOE中BO=R,EOR,BE=1,由BO2=BE2+EO2,得R∴外接球的半徑為,表面積為:故答案為.【題目點(diǎn)撥】涉及球與棱柱、棱錐的切、接問題時(shí),一般過球心及多面體中的特殊點(diǎn)(一般為接、切點(diǎn))或線作截面,把空間問題轉(zhuǎn)化為平面問題,再利用平面幾何知識(shí)尋找?guī)缀误w中元素間的關(guān)系,或只畫內(nèi)切、外接的幾何體的直觀圖,確定球心的位置,弄清球的半徑(直徑)與該幾何體已知量的關(guān)系,列方程(組)求解.15、4【解題分析】
利用求解.【題目詳解】,當(dāng)時(shí),等號(hào)成立.故答案為:4【題目點(diǎn)撥】本題主要考查絕對(duì)值不等式求最值,意在考查學(xué)生對(duì)該知識(shí)的理解掌握水平和分析推理能力.16、-8【解題分析】設(shè)等比數(shù)列的公比為,很明顯,結(jié)合等比數(shù)列的通項(xiàng)公式和題意可得方程組:,由可得:,代入①可得,由等比數(shù)列的通項(xiàng)公式可得.【名師點(diǎn)睛】等比數(shù)列基本量的求解是等比數(shù)列中的一類基本問題,解決這類問題的關(guān)鍵在于熟練掌握等比數(shù)列的有關(guān)公式并能靈活運(yùn)用,尤其需要注意的是,在使用等比數(shù)列的前n項(xiàng)和公式時(shí),應(yīng)該要分類討論,有時(shí)還應(yīng)善于運(yùn)用整體代換思想簡(jiǎn)化運(yùn)算過程.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、【解題分析】
由為的中點(diǎn),則可得,為的中點(diǎn),則可得,從中可以求出向量,得到答案.【題目詳解】由為的中點(diǎn),則可得.又為的中點(diǎn),所以【題目點(diǎn)撥】本題考查向量的基本定理和向量的加減法的法則,屬于中檔題.18、(1);(2)【解題分析】
(1)根據(jù)等差數(shù)列性質(zhì),由可知為等差數(shù)列,結(jié)合首項(xiàng)與公差即可求得的表達(dá)式,由即可求得數(shù)列的通項(xiàng)公式;(2)代入數(shù)列的通項(xiàng)公式可得數(shù)列的通項(xiàng)公式.結(jié)合錯(cuò)位相減法,即可求得數(shù)列的前n項(xiàng)和.【題目詳解】(1)由,可知是等差數(shù)列,其公差又,得,知首項(xiàng)為,得,即當(dāng)時(shí),有當(dāng),也滿足此通項(xiàng),故;(2)由(1)可知,所以可得由兩式相減得整理得.【題目點(diǎn)撥】本題考查了等差數(shù)列通項(xiàng)公式的求法,的應(yīng)用,錯(cuò)位相減法求數(shù)列的前n項(xiàng)和,屬于中檔題.19、(1)最小正周期為,單調(diào)遞增區(qū)間為;(2)當(dāng)時(shí),函數(shù)取最小值.【解題分析】
(1)利用三角恒等變換思想化簡(jiǎn)函數(shù)的解析式為,利用正弦型函數(shù)的周期公式可求得函數(shù)的最小正周期,解不等式可求得函數(shù)的單調(diào)遞增區(qū)間;(2)由計(jì)算出的取值范圍,再利用正弦函數(shù)的基本性質(zhì)可求得該函數(shù)的最小值及其對(duì)應(yīng)的值.【題目詳解】(1),所以,函數(shù)的最小正周期為;令,得,所以函數(shù)的單調(diào)增區(qū)間為;(2)當(dāng)時(shí),,所以,當(dāng)時(shí),即當(dāng)時(shí),取得最小值,所以,函數(shù)在區(qū)間上的最小值為,此時(shí).【題目點(diǎn)撥】本題考查正弦型函數(shù)的最小正周期和單調(diào)區(qū)間、最值的求解,解答的關(guān)鍵就是利用三角恒等變換思想化簡(jiǎn)函數(shù)解析式,考查計(jì)算能力,屬于中等題.20、(1)證明見解析;(2).【解題分析】
(1)利用數(shù)列的遞推公式證明出為非零常數(shù),即可證明出數(shù)列是等比數(shù)列;(2)確定等比數(shù)列的首項(xiàng)和公比,求出數(shù)列的通項(xiàng)公式,即可求出.【題目詳解】(1),,因此,數(shù)列是等比數(shù)列;(2)由于,所以,數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,,因此,.【題目點(diǎn)
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 合伙養(yǎng)殖協(xié)議書標(biāo)準(zhǔn)范本
- 工程試車與施工合同條款的互動(dòng)關(guān)系
- 版權(quán)許可協(xié)議范本
- 出租車駕駛員聘用合同2024年
- 信用擔(dān)保協(xié)議書
- 2024汽車運(yùn)輸合同范本簡(jiǎn)單簡(jiǎn)單版汽車維修合同范本
- 2024標(biāo)準(zhǔn)委托借款合同范本
- 北京市車輛過戶協(xié)議
- 昆明短期勞動(dòng)合同
- 2024年飯莊轉(zhuǎn)讓協(xié)議書范本
- 車間注塑工藝表
- 公司電動(dòng)三輪車使用管理規(guī)定
- 新部編人教版六年級(jí)下冊(cè)道德與法治全冊(cè)精品教案(教學(xué)設(shè)計(jì))
- 《小小的船》課件
- 《太陽(yáng)出來喜洋洋》 課件
- 《管理會(huì)計(jì)》課程標(biāo)準(zhǔn)
- 上、下水庫(kù)工程庫(kù)岸處理施工方案
- 閥門結(jié)構(gòu)和工作原理(下)
- 安全現(xiàn)場(chǎng)文明施工措施費(fèi)用清單
- father knows better說課教案教學(xué)(課堂PPT)
- 防護(hù)欄生命工程監(jiān)理實(shí)施細(xì)則全解
評(píng)論
0/150
提交評(píng)論