陜西省銅川市王益區(qū)2024屆數(shù)學高一第二學期期末達標測試試題含解析_第1頁
陜西省銅川市王益區(qū)2024屆數(shù)學高一第二學期期末達標測試試題含解析_第2頁
陜西省銅川市王益區(qū)2024屆數(shù)學高一第二學期期末達標測試試題含解析_第3頁
陜西省銅川市王益區(qū)2024屆數(shù)學高一第二學期期末達標測試試題含解析_第4頁
陜西省銅川市王益區(qū)2024屆數(shù)學高一第二學期期末達標測試試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

陜西省銅川市王益區(qū)2024屆數(shù)學高一第二學期期末達標測試試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知一個三角形的三邊是連續(xù)的三個自然數(shù),且最大角是最小角的2倍,則該三角形的最小角的余弦值是()A. B.C. D.2.給定函數(shù):①;②;③;④,其中奇函數(shù)是()A.① B.② C.③ D.④3.已知是邊長為4的等邊三角形,為平面內一點,則的最小值是()A. B. C. D.4.在△ABC中,點D在邊BC上,若,則A.+ B.+ C.+ D.+5.已知函數(shù)的圖像關于直線對稱,則可能取值是().A. B. C. D.6.某班有男生30人,女生20人,按分層抽樣方法從班級中選出5人負責校園開放日的接待工作.現(xiàn)從這5人中隨機選取2人,至少有1名男生的概率是()A. B. C. D.7.已知函數(shù)的圖象過點,且在上單調,同時的圖象向左平移個單位之后與原來的圖象重合,當,且時,,則A. B. C. D.8.已知是的共軛復數(shù),若復數(shù),則在復平面內對應的點是()A. B. C. D.9.以橢圓的兩個焦點為直徑的端點的圓與橢圓交于四個不同的點,順次連接這四個點和兩個焦點恰好組成一個正六邊形,那么這個橢圓的離心率為()A. B. C. D.10.以下說法正確的是()A.零向量與單位向量的模相等B.模相等的向量是相等向量C.已知均為單位向量,若,則與的夾角為D.向量與向量是共線向量,則四點在一條直線上二、填空題:本大題共6小題,每小題5分,共30分。11.已知,,則______,______.12.已知數(shù)列的前項和滿足,則______.13.已知無窮等比數(shù)列的首項為,公比為,則其各項的和為__________.14.已知數(shù)列滿足:(),設的前項和為,則______;15.若在等比數(shù)列中,,則__________.16.一條河的兩岸平行,河的寬度為560m,一艘船從一岸出發(fā)到河對岸,已知船的靜水速度,水流速度,則行駛航程最短時,所用時間是__________(精確到).三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知數(shù)列前n項和滿足(1)求數(shù)列的通項公式;(2)求數(shù)列的前n項和.18.在等差數(shù)列中,,,等比數(shù)列中,,.(1)求數(shù)列,的通項公式;(2)若,求數(shù)列的前n項和.19.已知,是函數(shù)的兩個相鄰的零點.(1)求;(2)若對任意,都有,求實數(shù)的取值范圍.(3)若關于的方程在上有兩個不同的解,求實數(shù)的取值范圍.20.已知過點且斜率為的直線與圓:交于,兩點.(1)求斜率的取值范圍;(2)為坐標原點,求證:直線與的斜率之和為定值.21.將正弦曲線如何變換可以得到函數(shù)的圖像,請寫出變換過程,并畫出一個周期的閉區(qū)間的函數(shù)簡圖.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】

設的最大角為,最小角為,可得出,,由題意得出,由二倍角公式,利用正弦定理邊角互化思想以及余弦定理可得出關于的方程,求出的值,可得出的值.【題目詳解】設的最大角為,最小角為,可得出,,由題意得出,,所以,,即,即,將,代入得,解得,,,則,故選B.【題目點撥】本題考查利用正弦定理和余弦定理解三角形,解題時根據(jù)對稱思想設邊長可簡化計算,另外就是充分利用二倍角公式進行轉化是解本題的關鍵,綜合性較強.2、D【解題分析】試題分析:,知偶函數(shù),,知非奇非偶,知偶函數(shù),,知奇函數(shù).考點:函數(shù)奇偶性定義.3、A【解題分析】

建立平面直角坐標系,表示出點的坐標,利用向量坐標運算和平面向量的數(shù)量積的運算,求得最小值,即可求解.【題目詳解】由題意,以中點為坐標原點,建立如圖所示的坐標系,則,設,則,所以,所以當時,取得最小值為,故選A.【題目點撥】本題主要考查了平面向量數(shù)量積的應用問題,根據(jù)條件建立坐標系,利用坐標法是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.4、C【解題分析】

根據(jù)向量減法和用表示,再根據(jù)向量加法用表示.【題目詳解】如圖:因為,所以,故選C.【題目點撥】本題考查向量幾何運算的加減法,結合圖形求解.5、D【解題分析】

根據(jù)正弦型函數(shù)的對稱性,可以得到一個等式,結合四個選項選出正確答案.【題目詳解】因為函數(shù)的圖像關于直線對稱,所以有,當時,,故本題選D.【題目點撥】本題考查了正弦型函數(shù)的對稱性,考查了數(shù)學運算能力.6、D【解題分析】

由題意,男生30人,女生20人,按照分層抽樣方法從中抽取5人,則男生為人,女生為,從這5人中隨機選取2人,共有種,全是女生的只有1種,所以至少有1名女生的概率為,故選D.7、A【解題分析】由題設可知該函數(shù)的周期是,則過點且可得,故,由可得,所以由可得,注意到,故,所以,應選答案A點睛:已知函數(shù)的圖象求解析式(1).(2)由函數(shù)的周期求(3)利用“五點法”中相對應的特殊點求.8、A【解題分析】由,得,所以在復平面內對應的點為,故選A.9、D【解題分析】

四個交點中的任何一個到焦點的距離和都是,然后分析正六邊形中的長度和焦距的關系,從而建立等式求解.【題目詳解】設橢圓的焦點是,圓與橢圓的四個交點是,設,,,,.故選D.【題目點撥】本題考查了橢圓的定義和橢圓的性質,屬于基礎題型10、C【解題分析】

根據(jù)零向量、單位向量、相等向量,向量的模、向量共線、向量數(shù)量積的運算的知識分析選項,由此確定正確選項.【題目詳解】對于A選項,零向量的模是,單位向量的模是,兩者不相等,故A選項說法錯誤.對于B選項,兩個向量大小和方向都相等才是相等向量,故B選項說法錯誤.對于C選項,由,故C選項說法正確.對于D選項,向量與向量是共線向量,但是這兩個向量沒有公共點,所以無法判斷是否在一條直線上.故D選項說法錯誤.故選:C【題目點撥】本小題主要考查向量的有關概念,考查向量數(shù)量積的運算,屬于基礎題.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

由的值,可求出的值,再判斷角的范圍,可判斷出,進而將平方,可求出答案.【題目詳解】由題意,,因為,所以,即;又因為,所以,即,而,由于,可知,所以,則,即.故答案為:;.【題目點撥】本題考查同角三角函數(shù)基本關系的應用,考查二倍角公式的應用,考查學生的計算求解能力,屬于中檔題.12、5【解題分析】

利用求得,進而求得的值.【題目詳解】當時,,當時,,當時上式也滿足,故的通項公式為,故.【題目點撥】本小題主要考查已知求,考查運算求解能力,屬于基礎題.13、【解題分析】

根據(jù)無窮等比數(shù)列求和公式求出等比數(shù)列的各項和.【題目詳解】由題意可知,等比數(shù)列的各項和為,故答案為:.【題目點撥】本題考查等比數(shù)列各項和的求解,解題的關鍵就是利用無窮等比數(shù)列求和公式進行計算,考查計算能力,屬于基礎題.14、130【解題分析】

先利用遞推公式計算出的通項公式,然后利用錯位相減法可求得的表達式,即可完成的求解.【題目詳解】因為,所以,所以,所以,又因為,不符合時的通項公式,所以,當時,,所以,所以,所以,所以.故答案為:.【題目點撥】本題考查根據(jù)數(shù)列的遞推公式求通項公式以及錯位相減法的使用,難度一般.利用遞推公式求解數(shù)列的通項公式時,若出現(xiàn)了的形式,一定要注意標注,同時要驗證是否滿足的情況,這決定了通項公式是否需要分段去寫.15、【解題分析】

根據(jù)等比中項的性質,將等式化成即可求得答案.【題目詳解】是等比數(shù)列,若,則.因為,所以,.故答案為:1.【題目點撥】本題考查等比中項的性質,考查基本運算求解能力,屬于容易題.16、6【解題分析】

先確定船的方向,再求出船的速度和時間.【題目詳解】因為行程最短,所以船應該朝上游的方向行駛,所以船的速度為km/h,所以所用時間是.故答案為6【題目點撥】本題主要考查平面向量的應用,意在考查學生對該知識的理解掌握水平,屬于基礎題.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解題分析】

(1)利用當時,,當時,即可求解(2)由裂項相消求解即可【題目詳解】(1)當時,,當時,.所以可得.(2)由題意知,可設則.【題目點撥】本題考查數(shù)列通項公式的求解,考查裂項相消求和,注意相消時提出系數(shù)和剩余項數(shù),是中檔題18、(1),(2)【解題分析】

(1)根據(jù)等差數(shù)列的通項公式求出首項,公差和等比數(shù)列的通項公式求出首項,公比即可.

(2)由用錯位相減法求和.【題目詳解】(1)在等差數(shù)列中,設首項為,公差為.由,有,解得:所以又設的公比為,由,,得所以.(2)…………………①……………②由①-②得所以【題目點撥】本題考查求等差、等比數(shù)列的通項公式和用錯位相減法求和,屬于中檔題.19、(1);(2);(3)【解題分析】

(1)先化簡,再根據(jù)函數(shù)的周期求出的值,從而得到的解析式;(2)將問題轉化為,根據(jù)三角函數(shù)的性質求出的最大值,即可求出實數(shù)的取值范圍;(3)通過方程的解與函數(shù)圖象之間的交點關系,可將題意轉化為函數(shù)的圖象與直線有兩個交點,即可由圖象求出實數(shù)的取值范圍.【題目詳解】(1).由題意可知,的最小正周期,∴,又∵,∴,∴(2)由得,,∴,∵,∴,∴.∴,即,∴,所以(3)原方程可化為即,由,得時,,的最大值為2,∴要使方程在上有兩個不同的解,即函數(shù)的圖象與直線有兩個交點,由圖象可知,即,所以【題目點撥】本題主要考查三角函數(shù)的圖象與性質的應用,以及利用二倍角公式、兩角差的余弦公式、兩角和的正弦公式進行三角恒等變換,同時還考查了轉化與化歸思想,數(shù)形結合思想的應用.20、(1)(2)見解析【解題分析】

(1)根據(jù)圓心到直線的距離小于半徑得到答案.(2)聯(lián)立直線與圓方程:.韋達定理得計算,化簡得到答案.【題目詳解】解:(1)直線的方程為:即.由得圓心,半徑.直線與圓相交得,即.解得.所以斜率的取值范圍為.(2)聯(lián)立直線與圓方程:.消去整理得.設,,根據(jù)韋達定理得.則.∴直線與的斜率之和為定值1.【題目點撥】本題考查了斜率的

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論