版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
2024屆云南衡水實驗中學(xué)數(shù)學(xué)高一第二學(xué)期期末質(zhì)量跟蹤監(jiān)視試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標(biāo)記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.若,且,則是()A.第一象限角 B.第二象限角 C.第三象限角 D.第四象限角2.已知函數(shù)的圖像關(guān)于直線對稱,則可能取值是().A. B. C. D.3.為了得到函數(shù)的圖象,只需將函數(shù)的圖象()A.向左平移個單位 B.向右平移個單位C.向左平移個單位 D.向右平移個單位4.在中,A,B,C的對邊分別為a,b,c,,則的形狀一定是()A.直角三角形 B.等邊三角形 C.等腰三角形 D.等腰直角三角形5.下列命題正確的是()A.若,則 B.若,則C.若,則 D.若,則6.米勒問題,是指德國數(shù)學(xué)家米勒1471年向諾德爾教授提出的有趣問題:在地球表面的什么部位,一根垂直的懸桿呈現(xiàn)最長(即可見角最大?)米勒問題的數(shù)學(xué)模型如下:如圖,設(shè)是銳角的一邊上的兩定點,點是邊邊上的一動點,則當(dāng)且僅當(dāng)?shù)耐饨訄A與邊相切時,最大.若,點在軸上,則當(dāng)最大時,點的坐標(biāo)為()A. B.C. D.7.下列結(jié)論不正確的是()A.若,,則 B.若,,則C.若,則 D.若,則8.的值()A.小于0 B.大于0 C.等于0 D.不小于09.已知等差數(shù)列的前n項和為,則A.140 B.70 C.154 D.7710.某公司計劃在甲、乙兩個電視臺做總時間不超過300分鐘的廣告,廣告費(fèi)用不超過9萬元,甲、乙電視臺的廣告費(fèi)標(biāo)準(zhǔn)分別是500元/分鐘和200元/分鐘,假設(shè)甲、乙兩個電視臺為該公司做的廣告能給公司帶來的收益分別為0.4萬元/分鐘和0.2萬元/分鐘,那么該公司合理分配在甲、乙兩個電視臺的廣告時間,能使公司獲得最大的收益是()萬元A.72 B.80 C.84 D.90二、填空題:本大題共6小題,每小題5分,共30分。11.設(shè),,,,則數(shù)列的通項公式=.12.若函數(shù),的圖像關(guān)于對稱,則________.13.67是等差數(shù)列-5,1,7,13,……中第項,則___________________.14.和2的等差中項的值是______.15.若銳角滿足則______.16.在銳角△中,,,,則________三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17.已知.(1)求函數(shù)的最小正周期;(2)求函數(shù)在閉區(qū)間上的最小值并求當(dāng)取最小值時,的取值.18.?dāng)?shù)學(xué)的發(fā)展推動著科技的進(jìn)步,正是基于線性代數(shù)、群論等數(shù)學(xué)知識的極化碼原理的應(yīng)用,華為的5G技術(shù)領(lǐng)先世界.目前某區(qū)域市場中5G智能終端產(chǎn)品的制造由H公司及G公司提供技術(shù)支持據(jù)市場調(diào)研預(yù)測,5C商用初期,該區(qū)域市場中采用H公司與G公司技術(shù)的智能終端產(chǎn)品分別占比及假設(shè)兩家公司的技術(shù)更新周期一致,且隨著技術(shù)優(yōu)勢的體現(xiàn)每次技術(shù)更新后,上一周期采用G公司技術(shù)的產(chǎn)品中有20%轉(zhuǎn)而采用H公司技術(shù),采用H公司技術(shù)的僅有5%轉(zhuǎn)而采用G公司技術(shù)設(shè)第n次技術(shù)更新后,該區(qū)域市場中采用H公司與G公司技術(shù)的智能終端產(chǎn)品占比分別為及,不考慮其它因素的影響.(1)用表示,并求實數(shù)使是等比數(shù)列;(2)經(jīng)過若干次技術(shù)更新后該區(qū)域市場采用H公司技術(shù)的智能終端產(chǎn)品占比能否達(dá)到75%以上?若能,至少需要經(jīng)過幾次技術(shù)更新;若不能,說明理由?(參考數(shù)據(jù):)19.已知等差數(shù)列中,,.(1)求數(shù)列的通項公式;(2)求數(shù)列的前項和.20.若不等式的解集為.(1)求證:;(2)求不等式的解集.21.甲、乙二人參加某體育項目訓(xùn)練,近期的五次測試成績得分情況如圖所示.(1)分別求出兩人得分的平均數(shù)與方差;(2)根據(jù)圖和上面算得的結(jié)果,對兩人的訓(xùn)練成績作出評價.
參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、C【解題分析】,則的終邊在三、四象限;則的終邊在三、一象限,,,同時滿足,則的終邊在三象限.2、D【解題分析】
根據(jù)正弦型函數(shù)的對稱性,可以得到一個等式,結(jié)合四個選項選出正確答案.【題目詳解】因為函數(shù)的圖像關(guān)于直線對稱,所以有,當(dāng)時,,故本題選D.【題目點撥】本題考查了正弦型函數(shù)的對稱性,考查了數(shù)學(xué)運(yùn)算能力.3、D【解題分析】
由函數(shù),根據(jù)三角函數(shù)的圖象變換,即可求解,得到答案.【題目詳解】由題意,函數(shù),為了得到函數(shù)的圖象,只需將函數(shù)的圖象向右平移個單位,故選D.【題目點撥】本題主要考查了三角函數(shù)的圖象變換,以及正弦的倍角公式的應(yīng)用,著重考查了推理與運(yùn)算能力,屬于基礎(chǔ)題.4、A【解題分析】
利用平方化倍角公式和邊化角公式化簡得到,結(jié)合三角形內(nèi)角和定理化簡得到,即可確定的形狀.【題目詳解】化簡得即即是直角三角形故選A【題目點撥】本題考查了平方化倍角公式和正弦定理的邊化角公式,在化簡時,將邊化為角,使邊角混雜變統(tǒng)一,還有三角形內(nèi)角和定理的運(yùn)用,這一點往往容易忽略.5、D【解題分析】
A項中,需要看分母的正負(fù);B項和C項中,已知兩個數(shù)平方的大小只能比較出兩個數(shù)絕對值的大小.【題目詳解】A項中,若,則有,故A項錯誤;B項中,若,則,故B項錯誤;C項中,若則即,故C項錯誤;D項中,若,則一定有,故D項正確.故選:D【題目點撥】本題主要考查不等關(guān)系與不等式,屬于基礎(chǔ)題.6、A【解題分析】
設(shè)點的坐標(biāo)為,求出線段的中垂線與線段的中垂線交點的橫坐標(biāo),即可得到的外接圓圓心的橫坐標(biāo),由的外接圓與邊相切于點,可知的外接圓圓心的橫坐標(biāo)與點的橫坐標(biāo)相等,即可得到點的坐標(biāo).【題目詳解】由于點是邊邊上的一動點,且點在軸上,故設(shè)點的坐標(biāo)為;由于,則直線的方程為:,點為直線與軸的交點,故點的坐標(biāo)為;由于為銳角,點是邊邊上的一動點,故;所以線段的中垂線方程為:;線段的中垂線方程為:;故的外接圓的圓心為直線與直線的交點,聯(lián)立,解得:;即的外接圓圓心的橫坐標(biāo)為的外接圓與邊相切于點,邊在軸上,則的外接圓圓心的橫坐標(biāo)與點的橫坐標(biāo)相等,即,解得:或(舍)所以點的坐標(biāo)為;故答案選A【題目點撥】本題考查直線方程、三角形外接圓圓心的求解,屬于中檔題7、B【解題分析】
根據(jù)不等式的性質(zhì),對選項逐一分析,由此得出正確選項.【題目詳解】對于A選項,不等式兩邊乘以一個正數(shù),不等號不改變方程,故A正確.對于B選項,若,則,故B選項錯誤.對于C、D選項,不等式兩邊同時加上或者減去同一個數(shù),不等號方向不改變,故C、D正確.綜上所述,本小題選B.【題目點撥】本小題主要考查不等式的性質(zhì),考查特殊值法解選擇題,屬于基礎(chǔ)題.8、A【解題分析】
確定各個角的范圍,由三角函數(shù)定義可確定正負(fù).【題目詳解】∵,∴,,,∴.故選:A.【題目點撥】本題考查各象限角三角函數(shù)的符號,掌握三角函數(shù)定義是解題關(guān)鍵.9、D【解題分析】
利用等差數(shù)列的前n項和公式,及等差數(shù)列的性質(zhì),即可求出結(jié)果.【題目詳解】等差數(shù)列的前n項和為,.故選D.【題目點撥】本題考查等差數(shù)列的前n項和的求法和等差數(shù)列的性質(zhì),屬于基礎(chǔ)題.10、B【解題分析】
設(shè)公司在甲、乙兩個電視臺的廣告時間分別為分鐘,總收益為元,根據(jù)題意得到約束條件,目標(biāo)函數(shù),平行目標(biāo)函數(shù)圖象找到在縱軸上截距最大時所經(jīng)過的點,把點的坐標(biāo)代入目標(biāo)函數(shù)中即可.【題目詳解】設(shè)公司在甲、乙兩個電視臺的廣告時間分別為分鐘,總收益為元,則由題意可得可行解域:,目標(biāo)函數(shù)為可行解域化簡得,,在平面直角坐標(biāo)系內(nèi),畫出可行解域,如下圖所示:作直線,即,平行移動直線,當(dāng)直線過點時,目標(biāo)函數(shù)取得最大值,聯(lián)立,解得,所以點坐標(biāo)為,因此目標(biāo)函數(shù)最大值為,故本題選B.【題目點撥】本題考查了應(yīng)用線性規(guī)劃知識解決實際問題的能力,正確列出約束條件,畫出可行解域是解題的關(guān)鍵.二、填空題:本大題共6小題,每小題5分,共30分。11、2n+1【解題分析】由條件得,且,所以數(shù)列是首項為4,公比為2的等比數(shù)列,則.12、【解題分析】
特殊值法:由的對稱軸是,所以即可算出【題目詳解】由題意得是三角函數(shù)所以【題目點撥】本題主要考查了三角函數(shù)的性質(zhì),需要記憶三角函數(shù)的基本性質(zhì):單調(diào)性、對稱軸、周期、定義域、最值、對稱中心等。根據(jù)對稱性取特殊值法解決本題是關(guān)鍵。屬于中等題。13、13【解題分析】
根據(jù)數(shù)列寫出等差數(shù)列通項公式,再令算出即可.【題目詳解】由題意,首項為-5,公差為,則等差數(shù)列通項公式,令,則故答案為:13.【題目點撥】等差數(shù)列首項為公差為,則通項公式14、【解題分析】
根據(jù)等差中項性質(zhì)求解即可【題目詳解】設(shè)等差中項為,則,解得故答案為:【題目點撥】本題考查等差中項的求解,屬于基礎(chǔ)題15、【解題分析】
由已知利用同角三角函數(shù)基本關(guān)系式可求,的值,利用兩角差的余弦公式即可計算得解.【題目詳解】、為銳角,,,,,,.故答案為:.【題目點撥】本題主要考查了同角三角函數(shù)基本關(guān)系式,兩角差的余弦函數(shù)公式在三角函數(shù)化簡求值中的應(yīng)用,屬于基礎(chǔ)題.16、【解題分析】
由正弦定理,可得,求得,即可求解,得到答案.【題目詳解】由正弦定理,可得,所以,又由△為銳角三角形,所以.故答案為:.【題目點撥】本題主要考查了正弦定理得應(yīng)用,其中解答中熟記正弦定理,準(zhǔn)確計算是解答的關(guān)鍵,著重考查了計算能力,屬于基礎(chǔ)題.三、解答題:本大題共5小題,共70分。解答時應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2),【解題分析】
(1)先化簡,再求最小正周期;(2)由,得,再結(jié)合的函數(shù)圖像求最小值.【題目詳解】(1),即,所以的最小正周期是;(2)由(1)知,又由,得,所以當(dāng)時,的最小值為,即時,的最小值為.【題目點撥】本題考查三角恒等變換,考查三角函數(shù)圖像的性質(zhì)應(yīng)用,屬于中檔題.18、(1),;(2)見解析【解題分析】
(1)根據(jù)題意經(jīng)過次技術(shù)更新后,通過整理得到,構(gòu)造是等比數(shù)列,求出,得證;(2)由(1)可求出通項,令,通過相關(guān)計算即可求出n的最小值,從而得到答案.【題目詳解】(1)由題意,可設(shè)5商用初期,該區(qū)域市場中采用H公司與G公司技術(shù)的智能終端產(chǎn)品的占比分別為.易知經(jīng)過次技術(shù)更新后,則,①由①式,可設(shè),對比①式可知.又.從而當(dāng)時,是以為首項,為公比的等比數(shù)列.(2)由(1)可知,所以經(jīng)過次技術(shù)更形后,該區(qū)域市場采用H公司技術(shù)的智能終端產(chǎn)品占比.由題意,令,得.故,即至少經(jīng)過6次技術(shù)更新,該區(qū)域市場采用H公司技術(shù)的智能終端產(chǎn)品占比能達(dá)到75%以上.【題目點撥】本題主要考查數(shù)列的實際應(yīng)用,等比數(shù)列的證明,數(shù)列與不等式的相關(guān)計算,綜合性強(qiáng),意在考查學(xué)生的閱讀理解能力,轉(zhuǎn)化能力,分析能力,計算能力,難度較大.19、(1)(2)【解題分析】
(1)先設(shè)等差數(shù)列的公差為,根據(jù)題中條件求出公差,即可得出通項公式;(2)根據(jù)前項和公式,即可求出結(jié)果.【題目詳解】(1)依題意,設(shè)等差數(shù)列的公差為,因為,所以,又,所以公差,所以.(2)由(1)知,,所以【題目點撥】本題主要考查等差數(shù)列,熟記等差數(shù)列的通項公式與前項和公式即可,屬于基礎(chǔ)題型.20、(1)證明見解析(2)【解題分析】
(1)由已知可得是的兩根,利用韋達(dá)定理,化簡可得結(jié)論;(2)結(jié)合(1)原不等式可化為,利用一元二次不等式的解法可得結(jié)果.【題目詳解】(1)∵不等式的解集為∴是的兩根,且∴∴,所以;(2)因為,,所以,即,又即,解集為【題目點撥】本題考查了求一元二次不等式的解法,是基礎(chǔ)題目.若,則的解集是;的解集是.21、(1)答案見解析;(2)答案見解析.【解題分析】試題分析:(1)由圖象可得甲、乙兩人五次測試的成績分別為,甲:10分,13分,12分,14分,16分;乙:13分,14分,12分,12分,14分.根據(jù)平均數(shù),方差的公式代入計算得解(2)由可知乙的成績較穩(wěn)定.從折線圖看,甲的成績基本呈上升狀態(tài),而乙的成績上下波動,可知甲的成績在不
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 9《心中的“110”》 (第二課時)說課稿-2024-2025學(xué)年道德與法治三年級上冊統(tǒng)編版
- 11《動物的眼睛》說課稿-2023-2024學(xué)年科學(xué)二年級下冊青島版
- 二零二五年度房產(chǎn)中介服務(wù)居間合同范本4篇
- 2025年度安防設(shè)備代工生產(chǎn)合同4篇
- 二零二五版酒店客房智能門鎖更換與系統(tǒng)升級合同4篇
- 二零二五年度二手車交易運(yùn)輸服務(wù)協(xié)議3篇
- 二零二五年度跨區(qū)域分公司加盟管理合同4篇
- 二零二五年度數(shù)字經(jīng)濟(jì)臨時工創(chuàng)新合作協(xié)議4篇
- 二零二五年度美甲店互聯(lián)網(wǎng)營銷推廣合同4篇
- 二零二五年度食品加工代工保密協(xié)議標(biāo)準(zhǔn)范本4篇
- 根因分析(huangyan)課件
- 圓形蓄水池工程量及配筋Excel計算
- 浙教版初中科學(xué)八下《表示元素的符號》課件
- 總住院醫(yī)師管理制度
- 八年級上冊歷史 第二單元 社會主義制度的建立與社會主義建設(shè)的探索
- DB31T 360-2020 住宅物業(yè)管理服務(wù)規(guī)范
- 園林綠化工程大樹移植施工方案
- 應(yīng)收賬款最高額質(zhì)押擔(dān)保合同模版
- 基于新型光彈性實驗技術(shù)的力學(xué)實驗教學(xué)方法探索
- 訴前車輛保全申請書(5篇)
- 醫(yī)院后勤保障管理組織架構(gòu)圖
評論
0/150
提交評論