2024屆江蘇省揚州高郵市高一數(shù)學第二學期期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第1頁
2024屆江蘇省揚州高郵市高一數(shù)學第二學期期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第2頁
2024屆江蘇省揚州高郵市高一數(shù)學第二學期期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第3頁
2024屆江蘇省揚州高郵市高一數(shù)學第二學期期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第4頁
2024屆江蘇省揚州高郵市高一數(shù)學第二學期期末學業(yè)質(zhì)量監(jiān)測模擬試題含解析_第5頁
已閱讀5頁,還剩10頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2024屆江蘇省揚州高郵市高一數(shù)學第二學期期末學業(yè)質(zhì)量監(jiān)測模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1.已知數(shù)列是等差數(shù)列,,則(

)A.36 B.30 C.24

D.12.已知兩點,,則()A. B. C. D.3.在△ABC中,,P是BN上的一點,若,則實數(shù)m的值為A.3 B.1 C. D.4.數(shù)列的通項公式為,則數(shù)列的前100項和().A. B. C. D.5.函數(shù)在區(qū)間(,)內(nèi)的圖象是()A. B. C. D.6.設變量、滿足約束條件,則目標函數(shù)的最大值為()A.2 B.3 C.4 D.97.三邊,滿足,則三角形是()A.銳角三角形 B.鈍角三角形 C.等邊三角形 D.直角三角形8.《九章算術》是我國古代數(shù)學成就的杰出代表作之一,其中《方田》章給出計算弧田面積所用的經(jīng)驗公式為:弧田面積(弦矢矢),弧田(如圖)由圓弧和其所對弦所圍成,公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差,現(xiàn)有圓心角為,半徑等于6米的弧田,按照上述經(jīng)驗公式計算所得弧田面積約為()A.12平方米 B.16平方米 C.20平方米 D.24平方米9.設等差數(shù)列的前項和為,,,則()A. B. C. D.10.函數(shù)是().A.周期為的偶函數(shù) B.周期為的奇函數(shù)C.周期為的偶函數(shù) D.周期為奇函數(shù)二、填空題:本大題共6小題,每小題5分,共30分。11.函數(shù)的最小值為____________.12.已知數(shù)列的通項公式,則____________.13.已知,則的最大值是____.14.從集合A={-1,1,2}中隨機選取一個數(shù)記為k,從集合B={-2,1,2}中隨機選取一個數(shù)記為b,則直線y=kx+b不經(jīng)過第三象限的概率為_____.15.某球的體積與表面積的數(shù)值相等,則球的半徑是16.不共線的三個平面向量,,兩兩所成的角相等,且,,則__________.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17.已知平面向量,且(1)若是與共線的單位向量,求的坐標;(2)若,且,設向量與的夾角為,求.18.已知數(shù)列an的前n項和為S(1)求數(shù)列an(2)設bn=an·log219.已知中,,,點D在AB上,,并且.(1)求BC的長度;(2)若點E為AB中點,求CE的長度.20.已知點.(1)求中邊上的高所在直線的方程;(2)求過三點的圓的方程.21.如圖是某神奇“黃金數(shù)學草”的生長圖.第1階段生長為豎直向上長為1米的枝干,第2階段在枝頭生長出兩根新的枝干,新枝干的長度是原來的,且與舊枝成120°,第3階段又在每個枝頭各長出兩根新的枝干,新枝干的長度是原來的,且與舊枝成120°,……,依次生長,直到永遠.(1)求第3階段“黃金數(shù)學草”的高度;(2)求第13階段“黃金數(shù)學草”的高度;

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個小題給出的四個選項中,恰有一項是符合題目要求的1、B【解題分析】

通過等差中項的性質(zhì)即可得到答案.【題目詳解】由于,故,故選B.【題目點撥】本題主要考查等差數(shù)列的性質(zhì),難度較小.2、C【解題分析】

直接利用兩點間距離公式求解即可.【題目詳解】因為兩點,,則,故選.【題目點撥】本題主要考查向量的模,兩點間距離公式的應用.3、C【解題分析】分析:根據(jù)向量的加減運算法則,通過,把用和表示出來,可得的值.詳解:如圖:∵,,

又三點共線,故得.

故選C..點睛:本題考查實數(shù)值的求法,是基礎題,解題時要認真審題,注意平面向量加法法則的合理運用.4、C【解題分析】

根據(jù)通項公式,結合裂項求和法即可求得.【題目詳解】數(shù)列的通項公式為,則故選:C.【題目點撥】本題考查了裂項求和的應用,屬于基礎題.5、D【解題分析】解:函數(shù)y=tanx+sinx-|tanx-sinx|=分段畫出函數(shù)圖象如D圖示,故選D.6、D【解題分析】

由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結合得到最優(yōu)解,聯(lián)立方程組求得最優(yōu)解的坐標,把最優(yōu)解的坐標代入目標函數(shù)得結論.【題目詳解】畫出滿足約束條件的可行域,如圖,畫出可行域,,,,平移直線,由圖可知,直線經(jīng)過時目標函數(shù)有最大值,的最大值為9.故選D.【題目點撥】本題主要考查線性規(guī)劃中,利用可行域求目標函數(shù)的最值,屬于簡單題.求目標函數(shù)最值的一般步驟是“一畫、二移、三求”:(1)作出可行域(一定要注意是實線還是虛線);(2)找到目標函數(shù)對應的最優(yōu)解對應點(在可行域內(nèi)平移變形后的目標函數(shù),最先通過或最后通過的頂點就是最優(yōu)解);(3)將最優(yōu)解坐標代入目標函數(shù)求出最值.7、C【解題分析】

由基本不等式得出,將三個不等式相加得出,由等號成立的條件可判斷出的形狀.【題目詳解】為三邊,,由基本不等式可得,將上述三個不等式相加得,當且僅當時取等號,所以,是等邊三角形,故選C.【題目點撥】本題考查三角形形狀的判斷,考查基本不等式的應用,利用基本不等式要注意“一正、二定、三相等”條件的應用,考查推理能力,屬于中等題.8、C【解題分析】

在中,由題意OA=4,∠DAO=,即可求得OD,AD的值,根據(jù)題意可求矢和弦的值,即可利用公式計算求值得解.【題目詳解】如圖,由題意可得:∠AOB=,OA=6,在中,可得:∠AOD=,∠DAO=,OD=AO=×6=3,可得:矢=6﹣3=3,由AD=AO=6×=3,可得:弦=2AD=2×3=6,所以:弧田面積=(弦×矢+矢2)=(6×3+32)=9+4.5≈20平方米.故選:C【題目點撥】本題考查扇形的面積公式,考查數(shù)學閱讀能力和數(shù)學運算能力,屬于中檔題.9、A【解題分析】

利用等差數(shù)列的基本量解決問題.【題目詳解】解:設等差數(shù)列的公差為,首項為,因為,,故有,解得,,故選A.【題目點撥】本題考查了等差數(shù)列的通項公式與前項和公式,解決問題的關鍵是熟練運用基本量法.10、B【解題分析】因,故是奇函數(shù),且最小正周期是,即,應選答案B.點睛:解答本題時充分運用題設條件,先借助二倍角的余弦公式的變形,將函數(shù)的形式進行化簡,然后再驗證函數(shù)的奇偶性與周期性,從而獲得問題的答案.二、填空題:本大題共6小題,每小題5分,共30分。11、【解題分析】

將函數(shù)構造成的形式,用換元法令,在定義域上根據(jù)新函數(shù)的單調(diào)性求函數(shù)最小值,之后可得原函數(shù)最小值?!绢}目詳解】由題得,,令,則函數(shù)在遞增,可得的最小值為,則的最小值為.故答案為:【題目點撥】本題考查了換元法,以及函數(shù)的單調(diào)性,是基礎題。12、【解題分析】

將代入即可求解【題目詳解】令,可得.故答案為:【題目點撥】本題考查求數(shù)列的項,是基礎題13、4【解題分析】

利用對數(shù)的運算法則以及二次函數(shù)的最值化簡求解即可.【題目詳解】,,,則.當且僅當時,函數(shù)取得最大值.【題目點撥】本題主要考查了對數(shù)的運算法則應用以及利用二次函數(shù)的配方法求最值.14、【解題分析】由題意,基本事件總數(shù)為3×3=9,其中滿足直線y=kx+b不經(jīng)過第三象限的,即滿足有k=-1,b=1或k=-1,b=2兩種,故所求的概率為.15、3【解題分析】試題分析:,解得.考點:球的體積和表面積16、4【解題分析】

故答案為:4【題目點撥】本題主要考查向量的位置關系,考查向量模的運算的處理方法.由于三個向量兩兩所成的角相等,故它們兩兩的夾角為,由于它們的模都是已知的,故它們兩兩的數(shù)量積也可以求出來,對后平方再開方,就可以計算出最后結果.三、解答題:本大題共5小題,共70分。解答時應寫出文字說明、證明過程或演算步驟。17、或【解題分析】分析:(1)由與共線,可設,又由為單位向量,根據(jù),列出方程即可求得向量的坐標;(2)根據(jù)向量的夾角公式,即可求解向量與的夾角.詳解:與共線,又,則,為單位向量,,或,則的坐標為或,,.點睛:對于平面向量的運算問題,通常用到:1、平面向量與的數(shù)量積為,其中是與的夾角,要注意夾角的定義和它的取值范圍:;2、由向量的數(shù)量積的性質(zhì)有,,,因此利用平面向量的數(shù)量積可以解決與長度、角度、垂直等有關的問題;3、本題主要利用向量的模與向量運算的靈活轉(zhuǎn)換,應用平面向量的夾角公式,建立的方程.18、(1)an=【解題分析】

(1)利用an=S(2)利用錯位相減法可求Tn【題目詳解】(1)因為Sn=2整理得到an=4,n=1(2)因為bn所以Tn2T所以-Tn【題目點撥】數(shù)列求和關鍵看通項的結構形式,如果通項是等差數(shù)列與等比數(shù)列的和,則用分組求和法;如果通項是等差數(shù)列與等比數(shù)列的乘積,則用錯位相減法;如果通項可以拆成一個數(shù)列連續(xù)兩項的差,那么用裂項相消法;如果通項的符號有規(guī)律的出現(xiàn),則用并項求和法.19、(1);(2)【解題分析】

(1)根據(jù)所給條件,結合三角函數(shù)可先求得.再由即可求得,進而得的值.在中由余弦定理即可求得的值.(2)由(1)可知,而,且E為AB中點,可得,.在可由勾股定理求得,再在由勾股定理求得即可.【題目詳解】(1)由,,可知,又,可得,所以.在中,由余弦定理可得,所以;(2)由(1)可知,,又點E為AB中點,可得,,在直角中,,在直角中,,所以.【題目點撥】本題考查了余弦定理在解三角形中的應用,線段關系及勾股定理求線段長的應用,屬于基礎題.20、(1);(2)【解題分析】

(1)邊上的高所在直線方程斜率與邊所在直線的方程斜率之積為-1,可求出高所在直線的斜率,代入即可求出高所在直線的方程。(2)設圓的一般方程為,代入即可求得圓的方程?!绢}目詳解】(1)因為所在直線的斜率為,所以邊上的高所在直線的斜率為所以邊上的高所在直線的方程為,即(2)設所求圓的方程為因為在所求的圓上,故有所以所求圓的方程為【題目點撥】(1)求直線方程一般通過直線點斜式方程求解,即知道點和斜率。(2)圓的一般方程為,三個未知數(shù)三個點代入即可。21、(1)(2)【解題分析】

(1)根據(jù)示意圖,計算出第階段、第階段生長的高度,即可求解出第階段“黃金數(shù)學草”的高度;(2)考慮第偶數(shù)階段、第奇數(shù)階段“黃金數(shù)學草”高度的生長量之間的關系,構造數(shù)列,利用數(shù)列求和完成第階段“黃金數(shù)學草”的高度的計算.【題目詳解】(1)因為第一階段:,所以第

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論