2024屆河北衡中同卷數(shù)學(xué)高一第二學(xué)期期末統(tǒng)考試題含解析_第1頁
2024屆河北衡中同卷數(shù)學(xué)高一第二學(xué)期期末統(tǒng)考試題含解析_第2頁
2024屆河北衡中同卷數(shù)學(xué)高一第二學(xué)期期末統(tǒng)考試題含解析_第3頁
2024屆河北衡中同卷數(shù)學(xué)高一第二學(xué)期期末統(tǒng)考試題含解析_第4頁
2024屆河北衡中同卷數(shù)學(xué)高一第二學(xué)期期末統(tǒng)考試題含解析_第5頁
已閱讀5頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆河北衡中同卷數(shù)學(xué)高一第二學(xué)期期末統(tǒng)考試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1.在中,所對的邊分別為,若,,,則()A. B. C.1 D.32.在中,角A、B、C所對的邊分別為a、b、c,若a、b、c成等比數(shù)列,且,則()A. B. C. D.3.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實(shí)線畫出的是某多面體的三視圖,則該多面體的體積為()A.54 B. C.90 D.814.某單位有職工160人,其中業(yè)務(wù)員有104人,管理人員32人,后勤服務(wù)人員24人,現(xiàn)用分層抽樣法從中抽取一個(gè)容量為20的樣本,則抽取管理人員()A.3人 B.4人 C.7人 D.12人5.用數(shù)學(xué)歸納法時(shí),從“k到”左邊需增乘的代數(shù)式是()A. B.C. D.6.已知數(shù)據(jù),2的平均值為2,方差為1,則數(shù)據(jù)相對于原數(shù)據(jù)()A.一樣穩(wěn)定 B.變得比較穩(wěn)定C.變得比較不穩(wěn)定 D.穩(wěn)定性不可以判斷7.直線在軸上的截距為()A. B. C. D.8.在△ABC中,點(diǎn)D在線段BC的延長線上,且=3,點(diǎn)O在線段CD上(與點(diǎn)C,D不重合),若=x+(1-x),則x的取值范圍是()A. B.C. D.9.在△ABC中,,則△ABC為()A.等腰三角形 B.等邊三角形C.直角三角形 D.等腰三角形或直角三角形10.延長正方形的邊至,使得.若動點(diǎn)從點(diǎn)出發(fā),沿正方形的邊按逆時(shí)針方向運(yùn)動一周回到點(diǎn),若,下列判斷正確的是()A.滿足的點(diǎn)必為的中點(diǎn)B.滿足的點(diǎn)有且只有一個(gè)C.的最小值不存在D.的最大值為二、填空題:本大題共6小題,每小題5分,共30分。11.?dāng)?shù)列滿足下列條件:,且對于任意正整數(shù),恒有,則______.12.如圖,在正方體中,點(diǎn)是棱上的一個(gè)動點(diǎn),平面交棱于點(diǎn).下列命題正確的為_______________.①存在點(diǎn),使得//平面;②對于任意的點(diǎn),平面平面;③存在點(diǎn),使得平面;④對于任意的點(diǎn),四棱錐的體積均不變.13.已知無窮等比數(shù)列滿足:對任意的,,則數(shù)列公比的取值集合為__________.14.已知數(shù)列:,,,,,,,,,,,,,,,,,則__________.15.已知,,若,則的取值范圍是__________.16.直線和將單位圓分成長度相等的四段弧,則________.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17.已知函數(shù).(I)求的最小正周期;(II)求在上的最大值與最小值.18.已知為數(shù)列的前n項(xiàng)和,且.(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前n項(xiàng)和.19.已知函數(shù)(1)求的最小正周期;(2)求的單調(diào)增區(qū)間;(3)若求函數(shù)的值域.20.已知數(shù)列為等差數(shù)列,是數(shù)列的前n項(xiàng)和,且,.(1)求數(shù)列的通項(xiàng)公式;(2)令,求數(shù)列的前n項(xiàng)和.21.在數(shù)1和100之間插入個(gè)實(shí)數(shù),使得這個(gè)數(shù)構(gòu)成遞增的等比數(shù)列,將這個(gè)數(shù)的乘積記作,再令.(Ⅰ)求數(shù)列的通項(xiàng)公式;(Ⅱ)設(shè),求數(shù)列的前項(xiàng)和.

參考答案一、選擇題:本大題共10小題,每小題5分,共50分。在每個(gè)小題給出的四個(gè)選項(xiàng)中,恰有一項(xiàng)是符合題目要求的1、A【解題分析】

利用三角形內(nèi)角和為,得到,利用正弦定理求得.【題目詳解】因?yàn)椋?,所以,在中,,所以,故選A.【題目點(diǎn)撥】本題考查三角形內(nèi)角和及正弦定理的應(yīng)用,考查基本運(yùn)算求解能力.2、A【解題分析】

先由a、b、c成等比數(shù)列,得到,再由題中條件,結(jié)合余弦定理,即可求出結(jié)果.【題目詳解】解:a、b、c成等比數(shù)列,所以,?所以,由余弦定理可知,又,所以.故選A.【題目點(diǎn)撥】本題主要考查解三角形,熟記余弦定理即可,屬于常考題型.3、A【解題分析】

由已知中的三視圖可得:該幾何體是一個(gè)以正方形為底面的斜四棱柱,進(jìn)而得到答案.【題目詳解】由三視圖可知,該多面體是一個(gè)以正方形為底面的斜四棱柱,四棱柱的底面是邊長為3的正方形,四棱柱的高為6,則該多面體的體積為.故選:A.【題目點(diǎn)撥】本題考查三視圖知識及幾何體體積的計(jì)算,根據(jù)三視圖判斷幾何體的形狀,再由幾何體體積公式求解,屬于簡單題.4、B【解題分析】

根據(jù)分層抽樣原理求出應(yīng)抽取的管理人數(shù).【題目詳解】根據(jù)分層抽樣原理知,應(yīng)抽取管理人員的人數(shù)為:故選:B【題目點(diǎn)撥】本題考查了分層抽樣原理應(yīng)用問題,是基礎(chǔ)題.5、C【解題分析】

分別求出n=k時(shí)左端的表達(dá)式,和n=k+1時(shí)左端的表達(dá)式,比較可得“n從k到k+1”左端需增乘的代數(shù)式.【題目詳解】當(dāng)n=k時(shí),左端=(k+1)(k+2)(k+3)…(2k),當(dāng)n=k+1時(shí),左端=(k+2)(k+3)…(2k)(2k+1)(2k+2),∴左邊需增乘的代數(shù)式是故選:C.【題目點(diǎn)撥】本題考查用數(shù)學(xué)歸納法證明等式,分別求出n=k時(shí)左端的表達(dá)式和n=k+1時(shí)左端的表達(dá)式,是解題的關(guān)鍵.6、C【解題分析】

根據(jù)均值定義列式計(jì)算可得的和,從而得它們的均值,再由方差公式可得,從而得方差.然后判斷.【題目詳解】由題可得:平均值為2,由,,所以變得不穩(wěn)定.故選:C.【題目點(diǎn)撥】本題考查均值與方差的計(jì)算公式,考查方差的含義.屬于基礎(chǔ)題.7、A【解題分析】

取計(jì)算得到答案.【題目詳解】直線在軸上的截距:取故答案選A【題目點(diǎn)撥】本題考查了直線的截距,屬于簡單題.8、D【解題分析】

根據(jù)所給的數(shù)量關(guān)系,寫出要求向量的表示式,注意共線的向量之間的三分之一關(guān)系,根據(jù)表示的關(guān)系式和所給的關(guān)系式進(jìn)行比較,得到結(jié)果.【題目詳解】如圖.依題意,設(shè)=λ,其中1<λ<,則有=+=+λ=+λ(-)=(1-λ)+λ.又=x+(1-x),且不共線,于是有x=1-λ∈,即x的取值范圍是.故選D.【題目點(diǎn)撥】本題考查向量的基本定理,是一個(gè)基礎(chǔ)題,這種題目可以出現(xiàn)在解答題目中,也可以單獨(dú)出現(xiàn),注意表示向量時(shí),一般從向量的起點(diǎn)出發(fā),繞著圖形的邊到終點(diǎn).9、C【解題分析】

直接利用正弦定理余弦定理化簡得到,即得解.【題目詳解】由已知得,由正、余弦定理得,即,即,故是直角三角形.故答案為:C【題目點(diǎn)撥】本題主要考查正弦定理余弦定理解三角形,意在考查學(xué)生對這些知識的掌握水平和分析推理水平.10、D【解題分析】試題分析:設(shè)正方形的邊長為1,建立如圖所示直角坐標(biāo)系,則的坐標(biāo)為,則設(shè),由得,所以,當(dāng)在線段上時(shí),,此時(shí),此時(shí),所以;當(dāng)在線段上時(shí),,此時(shí),此時(shí),所以;當(dāng)在線段上時(shí),,此時(shí),此時(shí),所以;當(dāng)在線段上時(shí),,此時(shí),此時(shí),所以;由以上討論可知,當(dāng)時(shí),可為的中點(diǎn),也可以是點(diǎn),所以A錯;使的點(diǎn)有兩個(gè),分別為點(diǎn)與中點(diǎn),所以B錯,當(dāng)運(yùn)動到點(diǎn)時(shí),有最小值,故C錯,當(dāng)運(yùn)動到點(diǎn)時(shí),有最大值,所以D正確,故選D.考點(diǎn):向量的坐標(biāo)運(yùn)算.【名師點(diǎn)睛】本題考查平面向量線性運(yùn)算,屬中檔題.平面向量是高考的必考內(nèi)容,向量坐標(biāo)化是聯(lián)系圖形與代數(shù)運(yùn)算的渠道,通過構(gòu)建直角坐標(biāo)系,使得向量運(yùn)算完全代數(shù)化,通過加、減、數(shù)乘的運(yùn)算法則,實(shí)現(xiàn)了數(shù)形的緊密結(jié)合,同時(shí)將參數(shù)的取值范圍問題轉(zhuǎn)化為求目標(biāo)函數(shù)的取值范圍問題,在解題過程中,還常利用向量相等則坐標(biāo)相同這一原則,通過列方程(組)求解,體現(xiàn)方程思想的應(yīng)用.二、填空題:本大題共6小題,每小題5分,共30分。11、512【解題分析】

直接由,可得,這樣推下去,再帶入等比數(shù)列的求和公式即可求得結(jié)論?!绢}目詳解】故選C?!绢}目點(diǎn)撥】利用遞推式的特點(diǎn),反復(fù)帶入遞推式進(jìn)行計(jì)算,發(fā)現(xiàn)規(guī)律,求出結(jié)果,本題是一道中等難度題目。12、①②④【解題分析】

根據(jù)線面平行和線面垂直的判定定理,以及面面垂直的判定定理和性質(zhì)分別進(jìn)行判斷即可.【題目詳解】①當(dāng)為棱上的一中點(diǎn)時(shí),此時(shí)也為棱上的一個(gè)中點(diǎn),此時(shí)//,滿足//平面,故①正確;②連結(jié),則平面,因?yàn)槠矫?,所以平面平面,故②正確;③平面,不可能存在點(diǎn),使得平面,故③錯誤;④四棱錐的體積等于,設(shè)正方體的棱長為1.∵無論、在何點(diǎn),三角形的面積為為定值,三棱錐的高,保持不變,三角形的面積為為定值,三棱錐的高為,保持不變.∴四棱錐的體積為定值,故④正確.故答案為①②④.【題目點(diǎn)撥】本題主要考查空間直線和平面平行或垂直的位置關(guān)系的判斷,解答本題的關(guān)鍵正確利用分割法求空間幾何體的體積的方法,綜合性較強(qiáng),難度較大.13、【解題分析】

根據(jù)條件先得到:的表示,然后再根據(jù)是等比數(shù)列討論公比的情況.【題目詳解】因?yàn)?,所以,即;取連續(xù)的有限項(xiàng)構(gòu)成數(shù)列,不妨令,則,且,則此時(shí)必為整數(shù);當(dāng)時(shí),,不符合;當(dāng)時(shí),,符合,此時(shí)公比;當(dāng)時(shí),,不符合;當(dāng)時(shí),,不符合;故:公比.【題目點(diǎn)撥】本題考查無窮等比數(shù)列的公比,難度較難,分析這種抽象類型的數(shù)列問題時(shí),經(jīng)常需要進(jìn)行分類,可先通過列舉的方式找到思路,然后再準(zhǔn)確分析.14、【解題分析】

根據(jù)數(shù)列的規(guī)律和可知的取值為,則分母為;又為分母為的項(xiàng)中的第項(xiàng),則分子為,從而得到結(jié)果.【題目詳解】當(dāng)時(shí),;當(dāng)時(shí),的分母為:又的分子為:本題正確結(jié)果:【題目點(diǎn)撥】本題考查根據(jù)數(shù)列的規(guī)律求解數(shù)列中的項(xiàng),關(guān)鍵是能夠根據(jù)分子的變化特點(diǎn)確定的取值.15、【解題分析】數(shù)形結(jié)合法,注意y=,y≠0等價(jià)于x2+y2=9(y>0),它表示的圖形是圓x2+y2=9在x軸之上的部分(如圖所示).結(jié)合圖形不難求得,當(dāng)-3<b≤3時(shí),直線y=x+b與半圓x2+y2=9(y>0)有公共點(diǎn).16、0【解題分析】

將單位圓分成長度相等的四段弧,每段弧對應(yīng)的圓周角為,計(jì)算得到答案.【題目詳解】如圖所示:將單位圓分成長度相等的四段弧,每段弧對應(yīng)的圓周角為或故答案為0【題目點(diǎn)撥】本題考查了直線和圓相交問題,判斷每段弧對應(yīng)的圓周角為是解題的關(guān)鍵.三、解答題:本大題共5小題,共70分。解答時(shí)應(yīng)寫出文字說明、證明過程或演算步驟。17、(I);(II)3,.【解題分析】

(I)利用降次公式和輔助角公式化簡解析式,由此求得的最小正周期.(II)根據(jù)函數(shù)的解析式,以及的取值范圍,結(jié)合三角函數(shù)值域的求法,求得在區(qū)間上的最大值與最小值.【題目詳解】(I)的最小正周期.(Ⅱ),.【題目點(diǎn)撥】本小題主要考查降次公式和輔助角公式,考查三角函數(shù)在閉區(qū)間上的最值的求法,屬于中檔題.18、(1)(2)【解題分析】

(1)先根據(jù)和項(xiàng)與通項(xiàng)關(guān)系得項(xiàng)之間遞推關(guān)系,再根據(jù)等比數(shù)列定義以及通項(xiàng)公式求結(jié)果,(2)根據(jù)錯位相減法求結(jié)果.【題目詳解】(1)因?yàn)?,所以?dāng)時(shí),,相減得,,當(dāng)時(shí),,因此數(shù)列為首項(xiàng)為,2為公比的等比數(shù)列,(2),所以,則2,兩式相減得.【題目點(diǎn)撥】本題考查錯位相減法求和以及由和項(xiàng)求通項(xiàng),考查基本求解能力,屬中檔題.19、(1)(2);(3).【解題分析】

(1)先化簡函數(shù)f(x)的解析式,再求函數(shù)的最小正周期;(2)解不等式,即得函數(shù)的增區(qū)間;(3)根據(jù)三角函數(shù)的性質(zhì)求函數(shù)的值域.【題目詳解】(1)由題得,所以函數(shù)的最小正周期為.(2)令,所以,所以函數(shù)的單調(diào)增區(qū)間為.(3),所以函數(shù)的值域?yàn)?【題目點(diǎn)撥】本題主要考查三角恒等變換,考查三角函數(shù)的圖像和性質(zhì),考查三角函數(shù)的值域,意在考查學(xué)生對這些知識的理解掌握水平,屬于基礎(chǔ)題.20、(1)(2)【解題分析】

(1)由等差數(shù)列可得,求得,即可求得通項(xiàng)公式;(2)由(1),則利用裂項(xiàng)相消法求數(shù)列的和即可【題目詳解】解:(1)因?yàn)閿?shù)列是等差數(shù)列,且,,則,解得,所以(2)由(1),,所以【題目點(diǎn)撥】本題考查等差數(shù)列的通項(xiàng)公式,考查裂項(xiàng)相消法求數(shù)列的和21、(Ⅰ)(Ⅱ)【

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論