2023年江蘇省蘇州市吳中學區(qū)橫涇中學數(shù)學九年級第一學期期末質量檢測試題含解析_第1頁
2023年江蘇省蘇州市吳中學區(qū)橫涇中學數(shù)學九年級第一學期期末質量檢測試題含解析_第2頁
2023年江蘇省蘇州市吳中學區(qū)橫涇中學數(shù)學九年級第一學期期末質量檢測試題含解析_第3頁
2023年江蘇省蘇州市吳中學區(qū)橫涇中學數(shù)學九年級第一學期期末質量檢測試題含解析_第4頁
2023年江蘇省蘇州市吳中學區(qū)橫涇中學數(shù)學九年級第一學期期末質量檢測試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

2023年江蘇省蘇州市吳中學區(qū)橫涇中學數(shù)學九年級第一學期期末質量檢測試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題(每題4分,共48分)1.如果2是方程x2-3x+k=0的一個根,則常數(shù)k的值為()A.2 B.1 C.-1 D.-22.如圖,⊙O是△ABC的外接圓,已知∠ABO=50°,則∠ACB的大小為()A.30° B.40° C.45° D.50°3.已知關于的一元二次方程有兩個不相等的實數(shù)根,則的取值范圍是()A.<2 B.<3 C.<2且≠0 D.<3且≠24.方程的解是()A.4 B.-4 C.-1 D.4或-15.已知銳角∠AOB如圖,(1)在射線OA上取一點C,以點O為圓心,OC長為半徑作,交射線OB于點D,連接CD;(2)分別以點C,D為圓心,CD長為半徑作弧,交于點M,N;(3)連接OM,MN.根據(jù)以上作圖過程及所作圖形,下列結論中錯誤的是()A.∠COM=∠COD B.若OM=MN,則∠AOB=20°C.MN∥CD D.MN=3CD6.小蘇和小林在如圖所示①的跑道上進行米折返跑.在整個過程中,跑步者距起跑線的距離單位:與跑步時間單位:的對應關系如圖所示②.下列敘述正確的是()A.兩人從起跑線同時出發(fā),同時到達終點;B.小蘇跑全程的平均速度大于小林跑全程的平均速度;C.小蘇前15s跑過的路程大于小林前15s跑過的路程;D.小林在跑最后100m的過程中,與小蘇相遇2次;7.能判斷一個平行四邊形是矩形的條件是()A.兩條對角線互相平分 B.一組鄰邊相等C.兩條對角線互相垂直 D.兩條對角線相等8.河堤橫斷面如圖所示,堤高BC=5米,迎水坡AB的坡比1:,則AC的長是()A.10米 B.米 C.15米 D.米9.如圖,是的直徑,切于點A,若,則的度數(shù)為()A.40° B.45° C.60° D.70°10.下列命題是真命題的是()A.如果|a|=|b|,那么a=bB.平行四邊形對角線相等C.兩直線平行,同旁內(nèi)角互補D.如果a>b,那么a2>b211.已知二次函數(shù)圖象如圖所示,對稱軸為過點且平行于軸的直線,則下列結論中正確的是()A. B. C. D.12.某校數(shù)學課外小組,在坐標紙上為某濕地公園的一塊空地設計植樹方案如下:第k棵樹種植在點Pk(xk,yk)處,其中x1=1,y1=1,且k≥2時,,[a]表示非負實數(shù)a的整數(shù)部分,例如[2.3]=2,,[1.5]=1.按此方案,第2119棵樹種植點的坐標應為()A.(6,2121) B.(2119,5) C.(3,413) D.(414,4)二、填空題(每題4分,共24分)13.如圖,平行四邊形分別切于點,連接并延長交于點,連接與剛好平行,若,則的直徑為______.14.已知函數(shù)是反比例函數(shù),則的值為__________.15.如圖,與⊙相切于點,,,則⊙的半徑為__________.16.如圖所示是某種貨號的直三棱柱(底面是等腰直角三角形)零件的三視圖,則它的表面積為__________17.如圖,扇形OAB,∠AOB=90,⊙P與OA、OB分別相切于點F、E,并且與弧AB切于點C,則扇形OAB的面積與⊙P的面積比是.18.四邊形ABCD與四邊形位似,點O為位似中心.若,則________.三、解答題(共78分)19.(8分)某商品的進價為每件20元,售價為每件30元,毎個月可買出180件:如果每件商品的售價每上漲1元,則每個月就會少賣出10件,但每件售價不能高于35元,毎件商品的售價為多少元時,每個月的銷售利潤將達到1920元?20.(8分)如圖,同學們利用所學知識去測量海平面上一個浮標到海岸線的距離.在一筆直的海岸線l上有A、B兩個觀測站,A在B的正東方向,小宇同學在A處觀測得浮標在北偏西60°的方向,小英同學在距點A處60米遠的B點測得浮標在北偏西45°的方向,求浮標C到海岸線l的距離(結果精確到0.01m).21.(8分)如圖,D是等邊三角形ABC內(nèi)一點,將線段AD繞點A順時針旋轉60°,得到線段AE,連接CD,BE.(1)求證:EB=DC;(2)連接DE,若∠BED=50°,求∠ADC的度數(shù).22.(10分)某射擊隊教練為了了解隊員訓練情況,從隊員中選取甲、乙兩名隊員進行射擊測試,相同條件下各射靶5次,成績統(tǒng)計如下:命中環(huán)數(shù)678910甲命中相應環(huán)數(shù)的次數(shù)01310乙命中相應環(huán)數(shù)的次數(shù)20021(1)根據(jù)上述信息可知:甲命中環(huán)數(shù)的中位數(shù)是_____環(huán),乙命中環(huán)數(shù)的眾數(shù)是______環(huán);

(2)試通過計算說明甲、乙兩人的成績誰比較穩(wěn)定?

(3)如果乙再射擊1次,命中8環(huán),那么乙射擊成績的方差會變小.(填“變大”、“變小”或“不變”)23.(10分)知識改變世界,科技改變生活。導航設備的不斷更新方便了人們的出行。如圖,某校組織學生乘車到蒲江茶葉基地C地進行研學活動,車到達A地后,發(fā)現(xiàn)C地恰好在A地的正東方向,且距A地9.1千米,導航顯示車輛應沿南偏東60°方向行駛至B地,再沿北偏東53°方向行駛一段距離才能到達C地,求B、C兩地的距離(精確到個位)(參考數(shù)據(jù))24.(10分)已知:△ABC在直角坐標平面內(nèi),三個頂點的坐標分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).(1)畫出△ABC向下平移4個單位長度得到的△A1B1C1,點C1的坐標是;(2)以點B為位似中心,在網(wǎng)格內(nèi)畫出△A2B2C2,使△A2B2C2與△ABC位似,且位似比為2:1,點C2的坐標是.25.(12分)如圖,,是的兩條弦,點分別在,上,且,是的中點.求證:(1).(2)過作于點.當,時,求的半徑.26.如圖,反比例函數(shù)的圖象與一次函數(shù)的圖象相交于點和點.(1)求反比例函數(shù)的解析式和點的坐標;(2)連接,,求的面積.(3)結合圖象,請直接寫出使反比例函數(shù)值小于一次函數(shù)值的自變量的取值范圍.

參考答案一、選擇題(每題4分,共48分)1、A【分析】把x=1代入已知方程列出關于k的新方程,通過解方程來求k的值.【詳解】解:∵1是一元二次方程x1-3x+k=0的一個根,

∴11-3×1+k=0,

解得,k=1.

故選:A.【點睛】本題考查的是一元二次方程的根即方程的解的定義.一元二次方程的根就是一元二次方程的解,就是能夠使方程左右兩邊相等的未知數(shù)的值.即用這個數(shù)代替未知數(shù)所得式子仍然成立.2、B【解析】試題解析:在中,故選B.3、D【分析】根據(jù)方程有兩個不相等的實數(shù)根結合二次項系數(shù)非0,即可得出關于k的一元一次不等式組,解不等式組即可得出結論.【詳解】∵關于x的一元二次方程(k?2)x2?2x+1=0有兩個不相等的實數(shù)根,∴,解得:k<3且k≠2.故選D.【點睛】本題考查根的判別式,解題突破口是得出關于k的一元一次不等式組.4、D【分析】利用因式分解法解一元二次方程即可.【詳解】解:解得:故選D.【點睛】此題考查的是解一元二次方程,掌握用因式分解法解一元二次方程是解決此題的關鍵.5、D【分析】由作圖知CM=CD=DN,再利用圓周角定理、圓心角定理逐一判斷可得.【詳解】解:由作圖知CM=CD=DN,

∴∠COM=∠COD,故A選項正確;

∵OM=ON=MN,

∴△OMN是等邊三角形,

∴∠MON=60°,

∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=∠MON=20°,故B選項正確;∵∠MOA=∠AOB=∠BON,

∴∠OCD=∠OCM=,

∴∠MCD=,

又∠CMN=∠AON=∠COD,∴∠MCD+∠CMN=180°,

∴MN∥CD,故C選項正確;

∵MC+CD+DN>MN,且CM=CD=DN,

∴3CD>MN,故D選項錯誤;

故選D.【點睛】本題主要考查作圖-復雜作圖,解題的關鍵是掌握圓心角定理和圓周角定理等知識點.6、D【分析】依據(jù)函數(shù)圖象中跑步者距起跑線的距離y(單位:m)與跑步時間t(單位:s)的對應關系,即可得到正確結論.【詳解】解:由函數(shù)圖象可知:兩人從起跑線同時出發(fā),先后到達終點,小林先到達終點,故A錯誤;根據(jù)圖象兩人從起跑線同時出發(fā),小林先到達終點,小蘇后到達終點,小蘇用的時間多,而路程相同,所以小蘇跑全程的平均速度小于小林跑全程的平均速度,故B錯誤;小蘇前15s跑過的路程小于小林前15s跑過的路程,故C錯誤;小林在跑最后100m的過程中,兩人相遇時,即實線與虛線相交的地方,由圖象可知2次,故D正確;

故選:D.【點睛】本題主要考查了函數(shù)圖象的讀圖能力,要能根據(jù)函數(shù)圖象的性質和圖象上的數(shù)據(jù)分析得出函數(shù)的類型和所需要的條件,結合實際意義得到正確的結論.7、D【分析】根據(jù)矩形的判定進行分析即可;【詳解】選項A中,兩條對角線互相平分是平行四邊形,故選項A錯誤;選項B中,一組鄰邊相等的平行四邊形是菱形,故選項B錯誤;選項C中,兩條對角線互相垂直的平行四邊形是菱形,故選項C錯誤;選項D中,兩條對角線相等的平行四邊形是矩形,故選項D正確;故選D.【點睛】本題主要考查了矩形的判定,掌握矩形的判定是解題的關鍵.8、B【解析】Rt△ABC中,已知了坡比是坡面的鉛直高度BC與水平寬度AC之比,通過解直角三角形即可求出水平寬度AC的長.【詳解】Rt△ABC中,BC=5米,tanA=1:;∴AC=BC÷tanA=5米;故選:B.【點睛】此題主要考查學生對坡度坡角的掌握及三角函數(shù)的運用能力.9、A【分析】先依據(jù)切線的性質求得∠CAB的度數(shù),然后依據(jù)直角三角形兩銳角互余的性質得到∠CBA的度數(shù),然后由圓周角定理可求得∠AOD的度數(shù).【詳解】解:∵AC是圓O的切線,AB是圓O的直徑,

∴AB⊥AC,

∴∠CAB=90°,

又∵∠C=70°,

∴∠CBA=20°,

∴∠AOD=40°.

故選:A.【點睛】本題主要考查的是切線的性質、圓周角定理、直角三角形的性質,求得∠CBA=20°是解題的關鍵.10、C【解析】根據(jù)絕對值的定義,平行線的性質,平行四邊形的性質,不等式的性質判斷即可.【詳解】A、如果|a|=|b|,那么a=±b,故錯誤;B、平行四邊形對角線不一定相等,故錯誤;C、兩直線平行,同旁內(nèi)角互補,故正確;D、如果a=1>b=﹣2,那么a2<b2,故錯誤;故選C.【點睛】本題考查了絕對值,不等式的性質,平行線的性質,平行四邊形的性質,熟練掌握各性質定理是解題的關鍵.11、D【分析】由拋物線開口向上,與y軸交于負半軸,對稱軸在y軸左側即可判斷a、c、b的符號,進而可判斷A項;拋物線的對稱軸為直線x=﹣,結合拋物線的對稱軸公式即可判斷B項;由圖象可知;當x=1時,a+b+c<0,再結合B項的結論即可判斷C項;由(1,0)與(﹣2,0)關于拋物線的對稱軸對稱,可知當x=-2時,y<0,進而可判斷D項.【詳解】解:A、∵拋物線開口向上,與y軸交于負半軸,對稱軸在y軸左側,∴a>0,c<0,<0,∴b>0,∴abc<0,所以本選項錯誤;B、∵拋物線的對稱軸為直線x=﹣,∴,∴a﹣b=0,所以本選項錯誤;C、∵當x=1時,a+b+c<0,且a=b,∴,所以本選項錯誤;D、∵(1,0)與(﹣2,0)關于拋物線的對稱軸對稱,且當x=1時,y<0,∴當x=-2時,y<0,即4a﹣2b+c<0,∴,所以本選項正確.故選:D.【點睛】本題考查了二次函數(shù)的圖象與性質,屬于??碱}型,熟練掌握拋物線的性質是解題關鍵.12、D【分析】根據(jù)已知分別求出1≤k≤5時,P點坐標為(1,1)、(1,2)、(1,3)、(1,4)、(1,5),當6≤k≤11時,P點坐標為(2,1)、(2,2)、(2,3)、(2,4)、(2,5),通過觀察得到點的坐標特點,進而求解.【詳解】解:由題可知1≤k≤5時,P點坐標為(1,1)、(1,2)、(1,3)、(1,4)、(1,5),當6≤k≤11時,P點坐標為(2,1)、(2,2)、(2,3)、(2,4)、(2,5),……通過以上數(shù)據(jù)可得,P點的縱坐標5個一組循環(huán),∵2119÷5=413…4,∴當k=2119時,P點的縱坐標是4,橫坐標是413+1=414,∴P(414,4),故選:D.【點睛】本題考查點的坐標和探索規(guī)律;能夠理解題意,通過已知條件探索點的坐標循環(huán)規(guī)律是解題的關鍵.二、填空題(每題4分,共24分)13、【分析】先證得四邊形AGCH是平行四邊形,則,再證得,求得,證得DO⊥HC,根據(jù),即可求得半徑,從而求得結論.【詳解】∵四邊形ABCD是平行四邊形,∴AD∥BC,∵AG∥HC,∴四邊形AGCH是平行四邊形,∴,∵是⊙O的切線,且切點為、,∴,∠GCH=∠HCD,∵AD∥BC,∴∠DHC=∠GCH,∴∠DHC=∠HCD,∴三角形DHC為等腰三角形,∴,∴,∴,,連接OD、OE,如圖,∵是⊙O的切線,且切點為、,∴DO是∠FDE的平分線,又∵,∴DO⊥HC,∴∠DOC=90,∵切⊙O于,∴OE⊥CD,∵∠OCE+∠COE=90,∠DOE+∠COE=90,∴∠OCE=∠DOE,∴,∴,即,∴,∴⊙O的直徑為:故答案為:.【點睛】本題考查了平行四邊形的判定和性質,切線長定理,相似三角形的判定和性質,等腰三角形的判定和性質,證得為等腰三角形是解題的關鍵.14、1【分析】根據(jù)反比例函數(shù)的定義列出方程,然后解一元二次方程即可.【詳解】解:根據(jù)題意得,n2﹣2=﹣1且n+1≠0,整理得,n2=1且n+1≠0,解得n=1.故答案為:1.【點睛】本題考查了反比例函數(shù)的定義,反比例函數(shù)解析式的一般形式(k≠0),也可轉化為y=kx﹣1(k≠0)的形式,特別注意不要忽略k≠0這個條件.15、【解析】與⊙相切于點,得出△ABO為直角三角形,再由勾股定理計算即可.【詳解】解:連接OB,∵與⊙相切于點,∴OB⊥AB,△ABO為直角三角形,又∵,,由勾股定理得故答案為:【點睛】本題考查了切線的性質,通過切線可得垂直,進而可應用勾股定理計算,解題的關鍵是熟知切線的性質.16、(28+20)【分析】根據(jù)三視圖可知,直三棱柱的底面是斜邊為4厘米、斜邊上的高為2厘米的等腰直角三角形,直三棱柱的高是5厘米的立體圖形,根據(jù)表面積計算公式即可求解.【詳解】直三棱柱的底面如下圖,根據(jù)三視圖可知,為等腰直角三角形,斜邊上的高為2厘米,根據(jù)等腰三角形三線合一的性質得:,∴,它的表面積為:(平方厘米)故答案為:.【點睛】考查了由三視圖判斷幾何體,幾何體的表面積,關鍵是得到直三棱柱的底面三角形各邊的長.17、【詳解】依題意連接OC則P在OC上,連接PF,PE則PF⊥OA,PE⊥OB,由切線長定理可知四邊形OEPF為正方形,且其邊長即⊙P的半徑(設⊙P的半徑為r)∴OP=又OC=OP+PC=+r=(1+)r即扇形OAB的(1+)r,∴18、1∶3【解析】根據(jù)四邊形ABCD與四邊形位似,,可知位似比為1:3,即可得相似比為1:3,即可得答案.【詳解】∵四邊形與四邊形位似,點為位似中心.,∴四邊形與四邊形的位似比是1∶3,∴四邊形與四邊形的相似比是1∶3,∴AB∶OA∶OA′=1∶3,故答案為1∶3.【點睛】本題考查了位似的相關知識,位似是相似的特殊形式,位似比等于相似比,其對應的面積比等于相似比的平方.三、解答題(共78分)19、毎件商品的售價為32元【分析】設毎件商品的上漲x元,根據(jù)一件的利潤×總的件數(shù)=總利潤,列出方程,再求解,注意把不合題意的解舍去.【詳解】解:設毎件商品的上漲x元,根據(jù)題意得:(30﹣20+x)(180﹣10x)=1920,解得:x1=2,x2=6(不合題意舍去),則毎件商品的售價為:30+2=32(元),答:毎件商品的售價為32元時,每個月的銷售利潤將達到1920元.【點睛】此題考查了一元二次方程的解,關鍵是讀懂題意,找出合適的等量關系,列出方程,再求解;注意本題先設每件商品的上漲的錢數(shù)更容易做.20、點C到海岸線l的距離約為81.96km.【分析】過點C作CD⊥AB于D,設CD=x米,分別利用在Rt△BCD與Rt△ACD表示出CD,AD,再利用tan∠CAD=tan30°即可求出x,故可求解.【詳解】解:如圖,過點C作CD⊥AB于D,設CD=x米,由題意得∠CBD=45°,∠CAD=30°,AB=45米在Rt△BCD中,∠CBD=45°,∴BD=CD=x米.在Rt△ACD中,∠CAD=30°,AD=60+x,=tan∠CAD=tan30°,即.解得≈81.96.答:點C到海岸線l的距離約為81.96km.【點睛】本題考查了解直角三角形的應用,做出輔助線,構造直角三角形是解題的關鍵.21、(1)證明見解析;(2)110°【分析】(1)根據(jù)等邊三角形的性質可得∠BAC=60°,AB=AC,由旋轉的性質可得∠DAE=60°,AE=AD,利用SAS即可證出≌,從而證出結論;(2)根據(jù)等邊三角形的判定定理可得為等邊三角形,從而得出∠AED=60°,由(1)中全等可得∠AEB=∠ADC,求出∠AEB即可求出結論.【詳解】解:(1)∵是等邊三角形,∴∠BAC=60°,AB=AC.∵線段AD繞點A順時針旋轉60°,得到線段AE,∴∠DAE=60°,AE=AD.∴∠BAD+∠EAB=∠BAD+∠DAC.∴∠EAB=∠DAC.在和中,∵,∴≌.∴EB=DC.(2)如圖,由(1)得∠DAE=60°,AE=AD,∴為等邊三角形.∴∠AED=60°,由(1)得≌,∴∠AEB=∠ADC.∵∠BED=50°,∴∠AEB=∠AED+∠BED=110°,∴∠ADC=110°.【點睛】此題考查的是等邊三角形的判定及性質、全等三角形的判定及性質和旋轉的性質,掌握等邊三角形的判定及性質、全等三角形的判定及性質和旋轉的性質是解決此題的關鍵.22、(1)8,6和9;(2)甲的成績比較穩(wěn)定;(3)變小【分析】(1)根據(jù)眾數(shù)、中位數(shù)的定義求解即可;

(2)根據(jù)平均數(shù)的定義先求出甲和乙的平均數(shù),再根據(jù)方差公式求出甲和乙的方差,然后進行比較,即可得出答案;

(3)根據(jù)方差公式進行求解即可.【詳解】解:(1)把甲命中環(huán)數(shù)從小到大排列為7,8,8,8,9,最中間的數(shù)是8,則中位數(shù)是8;

在乙命中環(huán)數(shù)中,6和9都出現(xiàn)了2次,出現(xiàn)的次數(shù)最多,則乙命中環(huán)數(shù)的眾數(shù)是6和9;

故答案為8,6和9;

(2)甲的平均數(shù)是:(7+8+8+8+9)÷5=8,

則甲的方差是:[(7-8)2+3(8-8)2+(9-8)2]=0.4,

乙的平均數(shù)是:(6+6+9+9+10)÷5=8,

則甲的方差是:[2(6-8)2+2(9-8)2+(10-8)2]=2.8,

所以甲的成績比較穩(wěn)定;

(3)如果乙再射擊1次,命中8環(huán),那么乙的射擊成績的方差變?。?/p>

故答案為變?。军c睛】本題考查了方差:一組數(shù)據(jù)中各數(shù)據(jù)與它們的平均數(shù)的差的平方的平均數(shù),叫做這組數(shù)據(jù)的方差.方差通常用s2來表示,計算公式是:s2=[(x1-)2+(x2-)2+…+(xn-)2];方差是反映一組數(shù)據(jù)的波動大小的一個量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越小;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好.也考查了算術平均數(shù)、中位數(shù)和眾數(shù).23、5千米【分析】作BD⊥AC,設AD=x,在Rt△ABD中求得BD,在Rt△BCD中求得CD,由AC=AD+CD建立關于x的方程,解之求得x的值,根據(jù)三角函數(shù)的定義即可得到結論.【詳解】解:如

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論