![2023年湖北省武漢市江岸區(qū)數(shù)學九上期末達標檢測試題含解析_第1頁](http://file4.renrendoc.com/view11/M03/37/1F/wKhkGWWV4U6AKiR0AAHOVbdaDv4729.jpg)
![2023年湖北省武漢市江岸區(qū)數(shù)學九上期末達標檢測試題含解析_第2頁](http://file4.renrendoc.com/view11/M03/37/1F/wKhkGWWV4U6AKiR0AAHOVbdaDv47292.jpg)
![2023年湖北省武漢市江岸區(qū)數(shù)學九上期末達標檢測試題含解析_第3頁](http://file4.renrendoc.com/view11/M03/37/1F/wKhkGWWV4U6AKiR0AAHOVbdaDv47293.jpg)
![2023年湖北省武漢市江岸區(qū)數(shù)學九上期末達標檢測試題含解析_第4頁](http://file4.renrendoc.com/view11/M03/37/1F/wKhkGWWV4U6AKiR0AAHOVbdaDv47294.jpg)
![2023年湖北省武漢市江岸區(qū)數(shù)學九上期末達標檢測試題含解析_第5頁](http://file4.renrendoc.com/view11/M03/37/1F/wKhkGWWV4U6AKiR0AAHOVbdaDv47295.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023年湖北省武漢市江岸區(qū)數(shù)學九上期末達標檢測試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔??荚嚱Y束后,請將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.若反比例函數(shù)y=圖象經(jīng)過點(5,-1),該函數(shù)圖象在()A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限2.下列事件中,屬于必然事件的是()A.小明買彩票中獎 B.投擲一枚質地均勻的骰子,擲得的點數(shù)是奇數(shù)C.等腰三角形的兩個底角相等 D.是實數(shù),3.拋物線的頂點坐標為A. B. C. D.4.若不等式組無解,則的取值范圍為()A. B. C. D.5.已知某種禮炮的升空高度h(m)與飛行時間t(s)的關系式是h=﹣(t﹣4)2+1.若此禮炮在升空到最高處時引爆,則引爆需要的時間為()A.3s B.4s C.5s D.6s6.在下列圖形中,不是中心對稱圖形的是()A. B. C. D.7.如圖,D是等邊△ABC外接圓上的點,且∠CAD=20°,則∠ACD的度數(shù)為()A.20° B.30° C.40° D.45°8.在奔馳、寶馬、豐田、三菱等汽車標志圖形中,為中心對稱圖形的是()A.B.C.D.9.如圖,BC是⊙O的直徑,點A、D在⊙O上,若∠ADC=48°,則∠ACB等于()度.A.42 B.48 C.46 D.5010.二次函數(shù)的圖象如圖所示,對稱軸為直線,下列結論不正確的是()A.B.當時,頂點的坐標為C.當時,D.當時,y隨x的增大而增大11.用頻率估計概率,可以發(fā)現(xiàn),某種幼樹在一定條件下移植成活的概率為0.9,下列說法正確的是(
)A.種植10棵幼樹,結果一定是“有9棵幼樹成活”B.種植100棵幼樹,結果一定是“90棵幼樹成活”和“10棵幼樹不成活”C.種植10n棵幼樹,恰好有“n棵幼樹不成活”D.種植n棵幼樹,當n越來越大時,種植成活幼樹的頻率會越來越穩(wěn)定于0.912.如圖,在△中,,兩點分別在邊,上,∥.若,則為()A. B. C. D.二、填空題(每題4分,共24分)13.在一個不透明的袋子中,裝有1個紅球和2個白球,這些球除顏色外其余都相同。攪勻后從中隨機一次摸出兩個球,則摸到的兩個球都是白球的概率是____.14.在英語句子“Wishyousuccess”(祝你成功)中任選一個字母,這個字母為“s”的概率是.15.已知關于的一元二次方程有兩個相等的實數(shù)根,則的值是__________.16.某校五個綠化小組一天的植樹的棵數(shù)如下:9,10,12,x,1.已知這組數(shù)據(jù)的平均數(shù)是10,那么這組數(shù)據(jù)的方差是_____.17.在一個不透明的箱子中,共裝有白球、紅球、黃球共60個,這些球的形狀、大小、質地等完全相同.小華通過多次試驗后發(fā)現(xiàn),從盒子中摸出紅球的頻率是15%,摸出白球的頻率是45%,那么可以估計盒子中黃球的個數(shù)是_____.18.已知正方形ABCD的邊長為,分別以B、D為圓心,以正方形的邊長為半徑在正方形內畫弧,得到如圖所示的陰影部分,若隨機向正方形ABCD內投擲一顆石子,則石子落在陰影部分的概率為_____.(結果保留π)三、解答題(共78分)19.(8分)某超市銷售一種商品,成本每千克30元,規(guī)定每千克售價不低于成本,且不高于70元,經(jīng)市場調查,每天的銷售量y(千克)與每千克售價x(元)滿足一次函數(shù)關系,部分數(shù)據(jù)如下表:售價x(元/千克)405060銷售量y(千克)1008060(1)求y與x之間的函數(shù)表達式;(2)設商品每天的總利潤為W(元),求W與x之間的函數(shù)表達式(利潤=收入?成本);(3)試說明(2)中總利潤W隨售價x的變化而變化的情況,并指出售價為多少元時獲得最大利潤,最大利潤是多少?20.(8分)裝潢公司要給邊長為6米的正方形墻面ABCD進行裝潢,設計圖案如圖所示(四周是四個全等的矩形,用材料甲進行裝潢;中心區(qū)是正方形MNPQ,用材料乙進行裝潢).兩種裝潢材料的成本如下表:材料甲乙價格(元/米2)5040設矩形的較短邊AH的長為x米,裝潢材料的總費用為y元.(1)MQ的長為米(用含x的代數(shù)式表示);(2)求y關于x的函數(shù)解析式;(3)當中心區(qū)的邊長不小于2米時,預備資金1760元購買材料一定夠用嗎?請說明理由.21.(8分)如圖,拋物線y=ax2+bx+4與x軸的兩個交點分別為A(-4,0)、B(2,0),與y軸交于點C,頂點為D.E(1,2)為線段BC的中點,BC的垂直平分線與x軸、y軸分別交于F、G.(1)求拋物線的函數(shù)解析式,并寫出頂點D的坐標;(2)在直線EF上求一點H,使△CDH的周長最小,并求出最小周長;(3)若點K在x軸上方的拋物線上運動,當K運動到什么位置時,△EFK的面積最大?并求出最大面積.22.(10分)已知關于的方程的一個實數(shù)根是3,求另一根及的值.23.(10分)某次足球比賽,隊員甲在前場給隊友乙擲界外球.如圖所示:已知兩人相距8米,足球出手時的高度為2.4米,運行的路線是拋物線,當足球運行的水平距離為2米時,足球達到最大高度4米.請你根據(jù)圖中所建坐標系,求出拋物線的表達式.24.(10分)今年深圳“讀書月”期間,某書店將每本成本為30元的一批圖書,以40元的單價出售時,每天的銷售量是300本.已知在每本漲價幅度不超過10元的情況下,若每本漲價1元,則每天就會少售出10本,設每本書上漲了x元.請解答以下問題:(1)填空:每天可售出書本(用含x的代數(shù)式表示);(2)若書店想通過售出這批圖書每天獲得3750元的利潤,應漲價多少元?25.(12分)閱讀下面材料,完成(1)-(3)題.數(shù)學課上,老師出示了這樣一道題:如圖,△ABC中,D為BC中點,且AD=AC,M為AD中點,連結CM并延長交AB于N.探究線段AN、MN、CN之間的數(shù)量關系,并證明.同學們經(jīng)過思考后,交流了自已的想法:小明:“通過觀察和度量,發(fā)現(xiàn)線段AN、AB之間存在某種數(shù)量關系.”小強:“通過倍長不同的中線,可以得到不同的結論,但都是正確的,大家就大膽的探究吧.”小偉:“通過構造、證明相似三角形、全等三角形,就可以將問題解決.”......老師:“若其他條件不變,設AB=a,則可以用含a的式子表示出線段CM的長.”(1)探究線段AN、AB之間的數(shù)量關系,并證明;(2)探究線段AN、MN、CN之間的數(shù)量關系,并證明;(3)設AB=a,求線段CM的長(用含a的式子表示).26.解方程:(1)(x+1)2﹣9=0(2)x2﹣4x﹣45=0
參考答案一、選擇題(每題4分,共48分)1、D【解析】∵反比例函數(shù)y=的圖象經(jīng)過點(5,-1),
∴k=5×(-1)=-5<0,
∴該函數(shù)圖象在第二、四象限.
故選D.2、C【分析】由題意根據(jù)事件發(fā)生的可能性大小判斷相應事件的類型即可判斷選項.【詳解】解:A.小明買彩票中獎,是隨機事件;B.投擲一枚質地均勻的骰子,擲得的點數(shù)是奇數(shù),是隨機事件;C.等腰三角形的兩個底角相等,是必然事件;D.是實數(shù),,是不可能事件;故選C.【點睛】本題考查的是必然事件、不可能事件、隨機事件的概念.必然事件指在一定條件下,一定發(fā)生的事件.不可能事件是指在一定條件下,一定不發(fā)生的事件,不確定事件即隨機事件是指在一定條件下,可能發(fā)生也可能不發(fā)生的事件.3、B【分析】利用頂點公式,進行計算【詳解】頂點坐標為故選B.【點睛】本題考查二次函數(shù)的性質,熟練運用拋物線頂點的公式是解題關鍵.4、A【分析】求出第一個不等式的解集,根據(jù)口訣:大大小小無解了可得關于m的不等式,解之可得.【詳解】解不等式,得:x>8,∵不等式組無解,∴4m≤8,解得m≤2,故選A.【點睛】本題考查的是解一元一次不等式組,正確求出每一個不等式解集是基礎,熟知“同大取大;同小取小;大小小大中間找;大大小小找不到”的原則是解答此題的關鍵.5、B【分析】根據(jù)頂點式就可以直接求出結論;【詳解】解:∵﹣1<0,∴當t=4s時,函數(shù)有最大值.即禮炮從升空到引爆需要的時間為4s,故選:B.【點睛】本題主要考查了二次函數(shù)的應用,掌握二次函數(shù)的應用是解題的關鍵.6、C【解析】根據(jù)中心對稱圖形的概念,對各選項分析判斷即可得解.【詳解】解:A、是中心對稱圖形,故本選項不符合題意;
B、是中心對稱圖形,故本選項不符合題意;
C、不是中心對稱圖形,故本選項符合題意;
D、是中心對稱圖形,故本選項不符合題意.故選:C.【點睛】本題考查了中心對稱圖形的概念,中心對稱圖形是要尋找對稱中心,旋轉180度后兩部分重合.7、C【分析】根據(jù)圓內接四邊形的性質得到∠D=180°-∠B=120°,根據(jù)三角形內角和定理計算即可.【詳解】∴∠B=60°,∵四邊形ABCD是圓內接四邊形,∴∠D=180°?∠B=120°,∴∠ACD=180°?∠DAC?∠D=40°,故選C.8、B【解析】試題分析:根據(jù)中心對稱圖形的概念,A、C、D都不是中心對稱圖形,是中心對稱圖形的只有B.故選B.考點:中心對稱圖形9、A【分析】連接AB,由圓周角定理得出∠BAC=90°,∠B=∠ADC=48°,再由直角三角形的性質即可得出答案.【詳解】解:連接AB,如圖所示:∵BC是⊙O的直徑,∴∠BAC=90°,∵∠B=∠ADC=48°,∴∠ACB=90°-∠B=42°;故選:A.【點睛】本題考查了圓周角定理以及直角三角形的性質;熟練掌握圓周角定理是解題的關鍵.10、C【解析】根據(jù)對稱軸公式和二次函數(shù)的性質,結合選項即可得到答案.【詳解】解:∵二次函數(shù)∴對稱軸為直線∴,故A選項正確;當時,∴頂點的坐標為,故B選項正確;當時,由圖象知此時即∴,故C選項不正確;∵對稱軸為直線且圖象開口向上∴當時,y隨x的增大而增大,故D選項正確;故選C.【點睛】本題考查二次函數(shù),解題的關鍵是熟練掌握二次函數(shù).11、D【解析】A.種植10棵幼樹,結果可能是“有9棵幼樹成活”,故不正確;B.種植100棵幼樹,結果可能是“90棵幼樹成活”和“10棵幼樹不成活”,故不正確;C.種植10n棵幼樹,可能有“9n棵幼樹成活”,故不正確;D.種植10n棵幼樹,當n越來越大時,種植成活幼樹的頻率會越來越穩(wěn)定于0.9,故正確;故選D.12、C【分析】先證明相似,然后再根據(jù)相似的性質求解即可.【詳解】∵∥∴∵∴=故答案為:C.【點睛】本題考查了三角形相似的性質,即相似三角形的面積之比為相似比的平方.二、填空題(每題4分,共24分)13、.【分析】用列表法或畫樹狀圖法分析所有等可能的結果,然后根據(jù)概率公式求出該事件的概率.【詳解】解:畫樹狀圖如下:
∵一共有6種情況,兩個球都是白球有2種,
∴P(兩個球都是白球),
故答案為:.【點睛】本題考查的是用列表法或畫樹狀圖法求概率,列表法或畫樹狀圖法可以不重復不遺漏的列出所有可能的結果,適合于兩步完成的事件.用到的知識點為:概率=所求情況數(shù)與總情況數(shù)之比.14、【解析】試題解析:在英語句子“Wishyousuccess!”中共14個字母,其中有字母“s”4個.故其概率為.考點:概率公式.15、【解析】根據(jù)方程有兩個相等的實數(shù)根,可得b2-4ac=0,方程化為一般形式后代入求解即可.【詳解】原方程化為一般形式為:mx2+(2m+1)x=0,∵方程有兩個相等的實數(shù)根∴(2m+1)2-4m×0=0【點睛】本題考查一元二次方程,解題的關鍵是熟練運用一元二次方程的根的判別式,本題屬于基礎題型.16、2【分析】首先根據(jù)平均數(shù)確定x的值,再利用方差公式S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],計算方差即可.【詳解】∵組數(shù)據(jù)的平均數(shù)是10,∴(9+10+12+x+1)=10,解得:x=11,∴S2=[[(9﹣10)2+(10﹣10)2+(12﹣10)2+(11﹣10)2+(1﹣10)2],=×(1+0+4+1+4),=2.故答案為:2.【點睛】本題考查了方差,一般地設n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1﹣)2+(x2﹣)2+…+(xn﹣)2],它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.17、1【分析】在同樣條件下,大量反復試驗時,隨機事件發(fā)生的頻率逐漸穩(wěn)定在概率附近,可以從比例關系入手,知道白球、黃球的頻率后,可以得出黃球概率,即可得出黃球的個數(shù).【詳解】解:∵從盒子中摸出紅球的頻率是15%,摸出白球的頻率是45%,∴得到黃球的概率為:1﹣15%﹣45%=40%,則口袋黃小球有:60×40%=1個.故答案為:1.【點睛】本題主要考查了利用頻率估計概率,大量反復試驗下頻率穩(wěn)定值即概率,解決本題的關鍵是要熟練掌握頻率,概率的關系.18、【分析】先求出空白部分面積,進而得出陰影部分面積,再利用石子落在陰影部分的概率=陰影部分面積÷正方形面積,進而得出答案.【詳解】∵扇形ABC中空白面積=,∴正方形中空白面積=2×(2﹣)=4﹣π,∴陰影部分面積=2﹣(4﹣π)=π﹣2,∴隨機向正方形ABCD內投擲一顆石子,石子落在陰影部分的概率=.故答案為:.【點睛】本題主要考查扇形的面積公式和概率公式,通過割補法,求出陰影部分面積,是解題的關鍵.三、解答題(共78分)19、(1)y=﹣2x+180;(2)W=﹣2x2+240x﹣5400;(3)當x=60時,W取得最大值,此時W=1.【分析】(1)待定系數(shù)法求解可得;(2)根據(jù)“總利潤=每千克利潤×銷售量”可得函數(shù)解析式;(3)將所得函數(shù)解析式配方成頂點式即可得最值情況.【詳解】(1)設y與x之間的函數(shù)解析式為y=kx+b,則,解得k=-2,b=180.即y與x之間的函數(shù)表達式是y=﹣2x+180;(2)由題意可得,W=(x﹣30)(﹣2x+180)=﹣2x2+240x﹣5400,即W與x之間的函數(shù)表達式是W=﹣2x2+240x﹣5400;(3)∵W=﹣2x2+240x﹣5400=﹣2(x﹣60)2+1,30≤x≤70,∴當30≤x≤60時,W隨x的增大而增大;當60≤x≤70時,W隨x的增大而減??;當x=60時,W取得最大值,此時W=1.【點睛】考查二次函數(shù)的應用,解題的關鍵是熟練掌握待定系數(shù)法求函數(shù)解析式及二次函數(shù)的性質.20、(1)(6﹣1x);(1)y=﹣40x1+140x+2;(3)預備資金4元購買材料一定夠用,理由見解析【分析】(1)根據(jù)大正方形的邊長減去兩個小長方形的寬即可求解;
(1)根據(jù)總費用等于兩種材料的費用之和即可求解;
(3)利用二次函數(shù)的性質和最值解答即可.【詳解】解:(1)∵AH=GQ=x,AD=6,
∴MQ=6-1x;
故答案為:6-1x;(1)根據(jù)題意,得AH=x,AE=6﹣x,S甲=4S長方形AENH=4x(6﹣x)=14x﹣4x1,S乙=S正方形MNQP=(6﹣1x)1=36﹣14x+4x1.∴y=50(14x﹣4x1)+40(36﹣14x+4x1)=﹣40x1+140x+2.答:y關于x的函數(shù)解析式為y=﹣40x1+140x+2.(3)預備資金4元購買材料一定夠用.理由如下:∵y=﹣40x1+140x+2=﹣40(x-3)1+1800,由﹣40<0,可知拋物線開口向下,在對稱軸的左側,y隨x的增大而增大.由x-3=0可知,拋物線的對稱軸為直線x=3.∴當x<3時,y隨x的增大而增大.∵中心區(qū)的邊長不小于1米,即6﹣1x≥1,解得x≤1,又x>0,∴0<x≤1.當x=1時,y=﹣40(x-3)1+1800=﹣40(1-3)1+1800=4,∴當0<x≤1時,y≤4.∴預備資金4元購買材料一定夠用.答:預備資金4元購買材料一定夠用.【點睛】此題主要考查了二次函數(shù)的應用以及配方法求最值和正方形的性質等知識,正確得出各部分的邊長是解題關鍵.21、(1)頂點D的坐標為(-1,)(2)H(,)(2)K(-,)【分析】(1)將A、B的坐標代入拋物線的解析式中,即可求出待定系數(shù)的值,進而可用配方法求出其頂點D的坐標;
(2)根據(jù)拋物線的解析式可求出C點的坐標,由于CD是定長,若△CDH的周長最小,那么CH+DH的值最小,由于EF垂直平分線段BC,那么B、C關于直線EF對稱,所以BD與EF的交點即為所求的H點;易求得直線BC的解析式,關鍵是求出直線EF的解析式;由于E是BC的中點,根據(jù)B、C的坐標即可求出E點的坐標;可證△CEG∽△COB,根據(jù)相似三角形所得的比例線段即可求出CG、OG的長,由此可求出G點坐標,進而可用待定系數(shù)法求出直線EF的解析式,由此得解;
(2)過K作x軸的垂線,交直線EF于N;設出K點的橫坐標,根據(jù)拋物線和直線EF的解析式,即可表示出K、N的縱坐標,也就能得到KN的長,以KN為底,F(xiàn)、E橫坐標差的絕對值為高,可求出△KEF的面積,由此可得到關于△KEF的面積與K點橫坐標的函數(shù)關系式,根據(jù)所得函數(shù)的性質即可求出其面積的最大值及對應的K點坐標.【詳解】(1)由題意,得解得,b=-1.所以拋物線的解析式為,頂點D的坐標為(-1,).(2)設拋物線的對稱軸與x軸交于點M.因為EF垂直平分BC,即C關于直線EG的對稱點為B,連結BD交于EF于一點,則這一點為所求點H,使DH+CH最小,即最小為DH+CH=DH+HB=BD=.而.∴△CDH的周長最小值為CD+DR+CH=.設直線BD的解析式為y=k1x+b,則解得,b1=2.所以直線BD的解析式為y=x+2.由于BC=2,CE=BC∕2=,Rt△CEG∽△COB,得CE:CO=CG:CB,所以CG=2.3,GO=1.3.G(0,1.3).同理可求得直線EF的解析式為y=x+.聯(lián)立直線BD與EF的方程,解得使△CDH的周長最小的點H(,).(2)設K(t,),xF<t<xE.過K作x軸的垂線交EF于N.則KN=yK-yN=-(t+)=.所以S△EFK=S△KFN+S△KNE=KN(t+2)+KN(1-t)=2KN=-t2-2t+3=-(t+)2+.即當t=-時,△EFK的面積最大,最大面積為,此時K(-,).【點睛】本題是二次函數(shù)的綜合類試題,考查了二次函數(shù)解析式的確定、軸對稱的性質、相似三角形的判定和性質、三角形面積的求法、二次函數(shù)的應用等知識,難度較大.22、,另一根為4.【分析】把代入方程求出m的值,再把代入原方程即可求解.【詳解】解:把代入方程,得,解得,把代入原方程,得,解得,.所以另一根為4.【點睛】此題主要考查一元二次方程的求解,解題的關鍵是熟知方程的解的定義及方程的解法.23、y=-0.4x2+4【分析】根據(jù)題意設拋物線的表達式為y=ax2+4(),代入(-2,2.4),即可求出a.【詳解】解:設y=ax2+4()∵圖象經(jīng)過(-2,2.4)∴4a+4=2.4a=-0.4∴表達式為y=-0.4x2+4【點睛】本題考查了二次函數(shù)的應用,解題的關鍵是從實際問題中抽象出二次函數(shù)模型.24、(1)(300﹣10x).(2)每本書應漲價5元.【解析】試題分析:(1)每本漲價1元,則每天就會少售出10本,設每本書上漲了x元,則每天就會少售出10x本,所以每天可售出書(300﹣10x)本;(2)根據(jù)每本圖書的利潤×每天銷售圖書的數(shù)量=總利潤列出方程,解方程即可求解.試題解析:(1)∵每本書上漲了x元,∴每天可售出書(300﹣10x)本.故答案為300﹣10x.(2)設每本書上漲了x元(x
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 上漿黃麻紗行業(yè)行業(yè)發(fā)展趨勢及投資戰(zhàn)略研究分析報告
- 沖壓模具開發(fā)合同范本
- 人工挖方合同范本
- 關于安裝監(jiān)控合同范本
- 代銷合同范例5篇
- 養(yǎng)殖基地養(yǎng)雞合同范本
- 無合同勞動仲裁申請書范本
- 企業(yè)房產贈與合同范本
- 借錢協(xié)議合同范本
- 公司電費簡易合同范本
- 2025年電力鐵塔市場分析現(xiàn)狀
- 臨床提高膿毒性休克患者1h集束化措施落實率PDCA品管圈
- DB53∕T 1269-2024 改性磷石膏用于礦山廢棄地生態(tài)修復回填技術規(guī)范
- JBT 14727-2023 滾動軸承 零件黑色氧化處理 技術規(guī)范 (正式版)
- GB/T 3478.1-1995圓柱直齒漸開線花鍵模數(shù)基本齒廓公差
- GB/T 1346-2001水泥標準稠度用水量、凝結時間、安定性檢驗方法
- FZ/T 25001-2012工業(yè)用毛氈
- 中國工運史知識競答附答案
- 瑞幸咖啡SWOT分析
- DL∕T 1867-2018 電力需求響應信息交換規(guī)范
- 小學生品德發(fā)展水平指標評價體系(小學)
評論
0/150
提交評論