2023年廣西欽州市欽北區(qū)數(shù)學九上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第1頁
2023年廣西欽州市欽北區(qū)數(shù)學九上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第2頁
2023年廣西欽州市欽北區(qū)數(shù)學九上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第3頁
2023年廣西欽州市欽北區(qū)數(shù)學九上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第4頁
2023年廣西欽州市欽北區(qū)數(shù)學九上期末學業(yè)質(zhì)量監(jiān)測試題含解析_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

2023年廣西欽州市欽北區(qū)數(shù)學九上期末學業(yè)質(zhì)量監(jiān)測試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(每題4分,共48分)1.下列二次根式中,是最簡二次根式的是()A. B. C. D.2.四條線段a,b,c,d成比例,其中b=3cm,c=8cm,d=12cm,則a=()A.2cm B.4cm C.6cm D.8cm3.拋物線經(jīng)過點與,若,則的最小值為()A.2 B. C.4 D.4.如圖,在矩形中,在上,,交于,連結(jié),則圖中與一定相似的三角形是A. B. C. D.和5.如圖,在△ABC中,cosB=,sinC=,AC=5,則△ABC的面積是()A. B.12 C.14 D.216.已知有理數(shù)a,b在數(shù)軸上表示的點如圖所示,則下列式子中正確的是()A.a(chǎn)+b<0 B.a(chǎn)+b>0 C.a(chǎn)﹣b<0 D.a(chǎn)b>07.如圖,是的直徑,是的弦,若,則().A. B. C. D.8.已知線段a、b、c、d滿足ab=cd,把它改寫成比例式,正確的是()A.a(chǎn):d=c:b B.a(chǎn):b=c:d C.c:a=d:b D.b:c=a:d9.如圖,以點O為位似中心,把△ABC放大為原來的2倍,得到△A′B′C′,以下說法錯誤的是()A. B.△ABC∽△A′B′C′C.∥A′B′ D.點,點,點三點共線10.方程x2=4的解是()A.x=2B.x=﹣2C.x1=1,x2=4D.x1=2,x2=﹣211.如圖,中,點,分別是邊,上的點,,點是邊上的一點,連接交線段于點,且,,,則S四邊形BCED()A. B. C. D.12.如果二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,那么下列不等式成立的是()A.a(chǎn)>0 B.b<0C.a(chǎn)c<0 D.bc<0二、填空題(每題4分,共24分)13.如圖,點A、B分別在y軸和x軸正半軸上滑動,且保持線段AB=4,點D坐標為(4,3),點A關(guān)于點D的對稱點為點C,連接BC,則BC的最小值為_____.14.如圖,在△ABC中,∠B=45°,AB=4,BC=6,則△ABC的面積是__________.15.若二次函數(shù)(為常數(shù))的最大值為3,則的值為________.16.已知正方形ABCD邊長為4,點P為其所在平面內(nèi)一點,PD=,∠BPD=90°,則點A到BP的距離等于_____.17.已知二次函數(shù),與的部分對應值如下表所示:…-101234……61-2-3-2m…下面有四個論斷:①拋物線的頂點為;②;③關(guān)于的方程的解為;④.其中,正確的有___________________.18.如圖,是一個半徑為,面積為的扇形紙片,現(xiàn)需要一個半徑為的圓形紙片,使兩張紙片剛好能組合成圓錐體,則_____.三、解答題(共78分)19.(8分)如圖,為的直徑,點為延長線上的一點,過點作的切線,切點為,過兩點分別作的垂線,垂足分別為,連接.求證:(1)平分;(2)若,求的長.20.(8分)如圖,點的坐標為,把點繞坐標原點逆時針旋轉(zhuǎn)后得到點.(1)求點經(jīng)過的弧長;(結(jié)果保留)(2)寫出點的坐標是________.21.(8分)如圖,在Rt中,∠ACB﹦90°(1)求證.∽(2)若,,求的長.22.(10分)拋物線經(jīng)過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.(1)求此拋物線的解析式;(2)已知點D在第四象限的拋物線上,求點D關(guān)于直線BC對稱的點D’的坐標;(3)在(2)的條件下,連結(jié)BD,問在x軸上是否存在點P,使,若存在,請求出P點的坐標;若不存在,請說明理由.23.(10分)如圖,在Rt△ABC中,∠C=90°,AD是∠BAC的平分線,AB∶BD=.(1)求tan∠DAC的值.(2)若BD=4,求S△ABC.24.(10分)在平面直角坐標系中,點O為坐標原點,拋物線y=ax2+ax+a(a≠0)交x軸于點A和點B(點A在點B左邊),交y軸于點C,連接AC,tan∠CAO=1.(1)如圖1,求拋物線的解析式;(2)如圖2,D是第一象限的拋物線上一點,連接DB,將線段DB繞點D順時針旋轉(zhuǎn)90°,得到線段DE(點B與點E為對應點),點E恰好落在y軸上,求點D的坐標;(1)如圖1,在(2)的條件下,過點D作x軸的垂線,垂足為H,點F在第二象限的拋物線上,連接DF交y軸于點G,連接GH,sin∠DGH=,以DF為邊作正方形DFMN,P為FM上一點,連接PN,將△MPN沿PN翻折得到△TPN(點M與點T為對應點),連接DT并延長與NP的延長線交于點K,連接FK,若FK=,求cos∠KDN的值.25.(12分)如圖,拋物線與軸交于兩點,與軸交于點,且.直線與拋物線交于兩點,與軸交于點,點是拋物線的頂點,設直線上方的拋物線上的動點的橫坐標為.(1)求該拋物線的解析式及頂點的坐標.(2)連接,直接寫出線段與線段的數(shù)量關(guān)系和位置關(guān)系.(3)連接,當為何值時?(4)在直線上是否存在一點,使為等腰直角三角形?若存在,請直接寫出點的坐標;若不存在,請說明理由.26.如圖,AB是⊙O的直徑,點C在圓O上,BE⊥CD垂足為E,CB平分∠ABE,連接BC(1)求證:CD為⊙O的切線;(2)若cos∠CAB=,CE=,求AD的長.

參考答案一、選擇題(每題4分,共48分)1、B【分析】根據(jù)最簡二次根式概念即可解題.【詳解】解:A.=,錯誤,B.是最簡二次根式,正確,C.=3錯誤,D.=,錯誤,故選B.【點睛】本題考查了最簡二次根式的概念,屬于簡單題,熟悉概念是解題關(guān)鍵.2、A【解析】由四條線段a、b、c、d成比例,根據(jù)比例線段的定義,即可得,又由b=3cm,c=8cm,d=12cm,即可求得a的值.【詳解】∵四條線段a、b、c、d成比例,∴∵b=3cm,c=8cm,d=12cm,

解得:a=2cm.

故答案為A.【點睛】此題考查了比例線段的定義.解題的關(guān)鍵是熟記比例線段的概念.3、D【分析】將點A、B的坐標代入解析式得到y(tǒng)1與y2,再根據(jù),即可得到答案.【詳解】將點A、B的坐標分別代入,得,,∵,∴,得:b,∴b的最小值為-4,故選:D.【點睛】此題考查二次函數(shù)點與解析式的關(guān)系,解不等式求取值,正確理解題意是解題的關(guān)鍵.4、B【解析】試題分析:根據(jù)矩形的性質(zhì)可得∠A=∠D=90°,再由根據(jù)同角的余角相等可得∠AEB=∠DFE,即可得到結(jié)果.∵矩形∴∠A=∠D=90°∴∠DEF+∠DFE=90°∵∴∠AEB+∠DEF=90°∴∠AEB=∠DFE∵∠A=∠D=90°,∠AEB=∠DFE∴∽故選B.考點:矩形的性質(zhì),相似三角形的判定點評:相似三角形的判定和性質(zhì)是初中數(shù)學的重點,貫穿于整個初中數(shù)學的學習,是中考中半徑常見的知識點,一般難度不大,需熟練掌握.5、A【分析】根據(jù)已知作出三角形的高線AD,進而得出AD,BD,CD,的長,即可得出三角形的面積.【詳解】解:過點A作AD⊥BC,∵△ABC中,cosB=,sinC=,AC=5,

∴cosB==,

∴∠B=45°,

∵sinC===,

∴AD=3,

∴CD==4,

∴BD=3,

則△ABC的面積是:×AD×BC=×3×(3+4)=.

故選A.【點睛】此題主要考查了解直角三角形的知識,作出AD⊥BC,進而得出相關(guān)線段的長度是解決問題的關(guān)鍵.6、A【分析】根據(jù)數(shù)軸判斷出a、b的符號和取值范圍,逐項判斷即可.【詳解】解:從圖上可以看出,b<﹣1<0,0<a<1,∴a+b<0,故選項A符合題意,選項B不合題意;a﹣b>0,故選項C不合題意;ab<0,故選項D不合題意.故選:A.【知識點】本題考查了數(shù)軸、有理數(shù)的加法、減法、乘法,根據(jù)數(shù)軸判斷出a、b的符號,熟知有理數(shù)的運算法則是解題關(guān)鍵.7、B【分析】根據(jù)AB是⊙O的直徑得出∠ADB=90°,再求出∠A的度數(shù),由圓周角定理即可推出∠BCD的度數(shù).【詳解】∵AB是⊙O的直徑,∴∠ADB=90°,∴在Rt△ABD中,∠A=90°﹣∠ABD=34°,∵弧BD=弧BD,∴∠BCD=∠A=34°,故選B.【點睛】本題考查圓周角定理及其推論,熟練掌握圓周角定理是解題的關(guān)鍵.8、A【分析】根據(jù)比例的基本性質(zhì):兩外項之積等于兩內(nèi)項之積.對選項一一分析,選出正確答案.【詳解】解:A、a:d=c:b?ab=cd,故正確;B、a:b=c:d?ad=bc,故錯誤;C、c:a=d:b?bc=ad,故錯誤D、b:c=a:d?ad=bc,故錯誤.故選A.【點睛】本題考查比例的基本性質(zhì),解題關(guān)鍵是根據(jù)比例的基本性質(zhì)實現(xiàn)比例式和等積式的互相轉(zhuǎn)換.9、A【分析】直接利用位似圖形的性質(zhì)進而分別分析得出答案.【詳解】解:∵以點O為位似中心,把△ABC放大為原圖形的2倍得到△A′B′C′,

∴△ABC∽△A′B′C′,點C、點O、點C′三點在同一直線上,AB∥A′B′,OB′:BO=2:1,故選項A錯誤,符合題意.

故選:A.【點睛】此題主要考查了位似變換,正確掌握位似圖形的性質(zhì)是解題關(guān)鍵.10、D【解析】x2=4,x=±2.故選D.點睛:本題利用方程左右兩邊直接開平方求解.11、B【分析】由,,求得GE=4,由可得△ADG∽△ABH,△AGE∽△AHC,由相似三角形對應成比例可得,得到HC=5,再根據(jù)相似三角形的面積比等于相似比的平方可得,S△ABC=40.5,再減去△ADE的面積即可得到四邊形BCED的面積.【詳解】解:∵,,∴GE=4∵∴△ADG∽△ABH,△AGE∽△AHC∴即,解得:HC=6∵DG:GE=2:1∴S△ADG:S△AGE=2:1∵S△ADG=12∴S△AGE=6,S△ADE=S△ADG+S△AGE=18∵∴△ADE∽△ABC∴S△ADE:S△ABC=DE2:BC2解得:S△ABC=40.5S四邊形BCED=S△ABC-S△ADE=40.5-18=22.5故答案選:B.【點睛】本題考查相似三角形的性質(zhì)和判定.12、C【解析】試題解析:由函數(shù)圖象可得各項的系數(shù):故選C.二、填空題(每題4分,共24分)13、1【分析】取AB的中點E,連接OE,DE,OD,依據(jù)三角形中位線定理即可得到BC=2DE,再根據(jù)O,E,D在同一直線上時,DE的最小值等于OD-OE=3,即可得到BC的最小值等于1.【詳解】解:如圖所示,取AB的中點E,連接OE,DE,OD,由題可得,D是AC的中點,∴DE是△ABC的中位線,∴BC=2DE,∵點D坐標為(4,3),∴OD==5,∵Rt△ABO中,OE=AB=×4=2,∴當O,E,D在同一直線上時,DE的最小值等于OD﹣OE=3,∴BC的最小值等于1,故答案為:1.【點睛】本題主要考查了勾股定理,三角形三條邊的關(guān)系,直角三角形斜邊上中線的性質(zhì)以及三角形中位線定理的運用,解決問題的關(guān)鍵是掌握直角三角形斜邊上中線的性質(zhì)以及三角形中位線定理.14、6【分析】作輔助線AD⊥BC構(gòu)造直角三角形ABD,利用銳角∠B的正弦函數(shù)的定義求出三角形ABC底邊BC上的高AD的長度,然后根據(jù)三角形的面積公式來求△ABC的面積即可.【詳解】過A作AD垂直BC于D,在Rt△ABD中,∵sinB=,∴AD=AB?sinB=4?sin45°=4×=,∴S△ABC=BC?AD=×6×=,故答案為:【點睛】本題考查了解直角三角形.解答該題時,通過作輔助線△ABC底邊BC上的高線AD構(gòu)造直角三角形,利用銳角三角函數(shù)的定義在直角三角形中求得AD的長度的.15、-1【分析】根據(jù)二次函數(shù)的最大值公式列出方程計算即可得解.【詳解】由題意得,,

整理得,,

解得:,

∵二次函數(shù)有最大值,

∴,

∴.

故答案為:.【點睛】本題考查了二次函數(shù)的最值,易錯點在于要考慮a的正負情況.16、或【分析】由題意可得點P在以D為圓心,為半徑的圓上,同時點P也在以BD為直徑的圓上,即點P是兩圓的交點,分兩種情況討論,由勾股定理可求BP,AH的長,即可求點A到BP的距離.【詳解】∵點P滿足PD=,∴點P在以D為圓心,為半徑的圓上,∵∠BPD=90°,∴點P在以BD為直徑的圓上,∴如圖,點P是兩圓的交點,若點P在AD上方,連接AP,過點A作AH⊥BP,∵CD=4=BC,∠BCD=90°,∴BD=4,∵∠BPD=90°,∴BP==3,∵∠BPD=90°=∠BAD,∴點A,點B,點D,點P四點共圓,∴∠APB=∠ADB=45°,且AH⊥BP,∴∠HAP=∠APH=45°,∴AH=HP,在Rt△AHB中,AB2=AH2+BH2,∴16=AH2+(3﹣AH)2,∴AH=(不合題意),或AH=,若點P在CD的右側(cè),同理可得AH=,綜上所述:AH=或.【點睛】本題是正方形與圓的綜合題,正確確定點P是以D為圓心,為半徑的圓和以BD為直徑的圓的交點是解決問題的關(guān)鍵.17、①③.【解析】根據(jù)圖表求出函數(shù)對稱軸,再根據(jù)圖表信息和二次函數(shù)性質(zhì)逐一判斷即可.【詳解】由二次函數(shù)y=ax2+bx+c(a≠0),y與x的部分對應值可知:該函數(shù)圖象是開口向上的拋物線,對稱軸是直線x=2,頂點坐標為(2,-3);與x軸有兩個交點,一個在0與1之間,另一個在3與4之間;當y=-2時,x=1或x=3;由拋物線的對稱性可知,m=1;①拋物線y=ax2+bx+c(a≠0)的頂點為(2,-3),結(jié)論正確;②b2﹣4ac=0,結(jié)論錯誤,應該是b2﹣4ac>0;③關(guān)于x的方程ax2+bx+c=﹣2的解為x1=1,x2=3,結(jié)論正確;④m=﹣3,結(jié)論錯誤,其中,正確的有.①③故答案為:①③【點睛】本題考查了二次函數(shù)的圖像,結(jié)合圖表信息是解題的關(guān)鍵.18、【分析】先根據(jù)扇形的面積和半徑求出扇形的弧長,即圓錐底面圓的周長,再利用圓的周長公式即可求出R.【詳解】解:設扇形的弧長為l,半徑為r,∵扇形面積,∴,∴,∴.故答案為:.【點睛】本題主要考查圓錐的有關(guān)計算,掌握扇形的面積公式是解題的關(guān)鍵.三、解答題(共78分)19、(1)見解析;(2)【分析】(1)連接OM,可證OM∥AC,得出∠CAM=∠AMO,由OA=OM可得∠OAM=∠AMO,從而可得出結(jié)果;(2)先求出∠MOP的度數(shù),OB的長度,則用弧長公式可求出的長.【詳解】解:(1)連接OM,∵PE為⊙O的切線,∴OM⊥PC,∵AC⊥PC,∴OM∥AC,∴∠CAM=∠AMO,∵OA=OM,∠OAM=∠AMO,∴∠CAM=∠OAM,即AM平分∠CAB;(2)∵∠APE=30°,∴∠MOP=∠OMP﹣∠APE=90°﹣30°=60°,∵AB=4,∴OB=2,∴的長為.【點睛】本題考查了圓的切線的性質(zhì),弧長的計算,平行線的判定與性質(zhì)以及等腰三角形的性質(zhì)等知識,解題的關(guān)鍵是靈活運用這些知識解決問題.20、(1);(2)【分析】(1)過點P作x軸的垂線,求出OP的長,由弧長公式可求出弧長;(2)作PA⊥x軸于A,QB⊥x軸于B,由旋轉(zhuǎn)的性質(zhì)得:∠POQ=90°,OQ=OP,由AAS證明△OBQ≌△PAO,得出OB=PA,QB=OA,由點P的坐標為(1,3),得出OB=PA=3,QB=OA=4,即可得出點Q的坐標.【詳解】解:(1)過作軸于,∵,∴,∴點經(jīng)過的弧長為;(2)把點繞坐標原點逆時針旋轉(zhuǎn)后得到點,分別過點、做軸的垂線,∴,,∴,,,∴,,則點的坐標是.【點睛】本題考查了坐標與圖形性質(zhì)、全等三角形的判定與性質(zhì)和弧長公式;熟練掌握坐標與圖形性質(zhì),證明三角形全等是解決問題的關(guān)鍵.21、(1)見解析;(2)【解析】(1)由題意直接根據(jù)相似三角形的判定定理,進行分析求證即可;(2)方法一:根據(jù)題意運用射影定理進行分析;方法二:根據(jù)題意利用銳角三角函數(shù)進行分析求值.【詳解】解:(1)證明:∵CD⊥AB,∴∠ADC=∠ACB=90°,又∵∠A=∠A,∴△ADC∽△ACB.(2)方法一:運用射影定理.∵∠ACB=90°,CD⊥AB.∴BC2=BD?BA,∴.∴方法二:巧用銳角三角函數(shù).在直角三角形BDC中cosB=,在直角三角形BCA中cosB=,代入得出AB=,∴,代入得出AB=.【點睛】本題考查相似三角形的判定與性質(zhì),熟練掌握相似三角形的判定與性質(zhì)是解題的關(guān)鍵.注意掌握射影定理即在直角三角形中,斜邊上的高是兩直角邊在斜邊上射影的比例中項.每一條直角邊是這條直角邊在斜邊上的射影和斜邊的比例中項.22、(1)(2)(0,-1)(3)(1,0)(9,0)【解析】(1)將A(?1,0)、C(0,?3)兩點坐標代入拋物線y=ax2+bx?3a中,列方程組求a、b的值即可;(2)將點D(m,?m?1)代入(1)中的拋物線解析式,求m的值,再根據(jù)對稱性求點D關(guān)于直線BC對稱的點D'的坐標;(3)分兩種情形①過點C作CP∥BD,交x軸于P,則∠PCB=∠CBD,②連接BD′,過點C作CP′∥BD′,交x軸于P′,分別求出直線CP和直線CP′的解析式即可解決問題.【詳解】解:(1)將A(?1,0)、C(0,?3)代入拋物線y=ax2+bx?3a中,得,解得∴y=x2?2x?3;(2)將點D(m,?m?1)代入y=x2?2x?3中,得m2?2m?3=?m?1,解得m=2或?1,∵點D(m,?m?1)在第四象限,∴D(2,?3),∵直線BC解析式為y=x?3,∴∠BCD=∠BCO=45°,CD′=CD=2,OD′=3?2=1,∴點D關(guān)于直線BC對稱的點D'(0,?1);(3)存在.滿足條件的點P有兩個.①過點C作CP∥BD,交x軸于P,則∠PCB=∠CBD,∵直線BD解析式為y=3x?9,∵直線CP過點C,∴直線CP的解析式為y=3x?3,∴點P坐標(1,0),②連接BD′,過點C作CP′∥BD′,交x軸于P′,∴∠P′CB=∠D′BC,根據(jù)對稱性可知∠D′BC=∠CBD,∴∠P′CB=∠CBD,∵直線BD′的解析式為∵直線CP′過點C,∴直線CP′解析式為,∴P′坐標為(9,0),綜上所述,滿足條件的點P坐標為(1,0)或(9,0).【點睛】本題考查了二次函數(shù)的綜合運用.關(guān)鍵是由已知條件求拋物線解析式,根據(jù)拋物線的對稱性,直線BC的特殊性求點的坐標,學會分類討論,不能漏解.23、(1);(2).【分析】(1)過D點作DE⊥AB于點E,根據(jù)相似三角形的判定易證△BDE∽△BAC,可得,再根據(jù)角平分線的性質(zhì)可得DE=CD,利用等量代換即可得到tan∠DAC的值;(2)先利用特殊角的三角形函數(shù)得到∠CAD=30°,進而得到∠B=30°,根據(jù)直角三角形中30°角所對直角邊為斜邊的一半得到DE的長,進而得到CD與AC的長,再利用三角形的面積公式求解即可.【詳解】解:(1)如圖,過D點作DE⊥AB于點E,在△BDE與△BAC中,∠BED=∠C=90°,∠B=∠B,∴△BDE∽△BAC,∴,∵AD是∠BAC的平分線,∴DE=CD,∴,∴tan∠DAC;(2)∵tan∠DAC,∴∠DAC=30°,∴∠BAC=2∠DAC=60°,∴∠B=90°﹣∠BAC=30°,∴DE=BD=2,∴CD=DE=2,∴BC=BD+CD=6,∵,∴,∴S△ABC=.【點睛】本題主要考查銳角三角函數(shù),角平分線的性質(zhì),相似三角形的判定與性質(zhì),解此題的關(guān)鍵在于熟練掌握根據(jù)角平分線的性質(zhì)作出輔助線.24、(1)y=﹣x2+x+1;(2)D的坐標為(1,1);(1)【分析】(1)通過拋物線y=先求出點A的坐標,推出OA的長度,再由tan∠CAO=1求出OC的長度,點C的坐標,代入原解析式即可求出結(jié)論;(2)如圖2,過點D分別作x軸和y軸的垂線,垂足分別為W和Z,證△DZE≌△DWB,得到DZ=DW,由此可知點D的橫縱坐標相等,設出點D坐標,代入拋物線解析式即可求出點D坐標;(1)如圖1,連接CD,分別過點C,H作F的垂線,垂足分別為Q,I,過點F作DC的垂線,交DC的延長線于點U,先求出點G坐標,求出直線DG解析式,再求出點F的坐標,即可求出正方形FMND的邊長,再求出其對角線FN的長度,最后證點F,K,M,N,D共圓,推出∠KDN=∠KFN,求出∠KFN的余弦值即可.【詳解】解:(1)在拋物線y=中,當y=0時,x1=﹣1,x2=4,∴A(﹣1,0),B(4,0),∴OA=1,∵tan∠CAO=1,∴OC=1OA=1,∴C(0,1),∴a=1,∴a=2,∴拋物線的解析式為:y=﹣x2+x+1;(2)如圖2,過點D分別作x軸和y軸的垂線,垂足分別為W和Z,∵∠ZDW=∠EDB=90°,∴∠ZDE=∠WDB,∵∠DZE=∠DWB=90°,DE=DB,∴△DZE≌△DWB(AAS),∴DZ=DW,設點D(k,﹣k2+k+1),∴k=﹣k2+k+1,解得,k1=﹣(舍去),k2=1,∴D的坐標為(1,1);(1)如圖1,連接CD,分別過點C,H作F的垂線,垂足分別為Q,I,∵sin∠DGH=∴設HI=4m,HG=5m,則IG=1m,由題意知,四邊形OCDH是正方形,∴CD=DH=1,∵∠CDQ+∠IDH=90°,∠IDH+∠DHI=90°,∴∠CDQ=∠DHI,又∵∠CQD=∠DIH=90°,∴△CQD≌△DIH(AAS),設DI=n,則CQ=DI=n,DQ=HI=4m,∴IQ=DQ﹣DI=4m﹣n,∴GQ=GI﹣IQ=1m﹣(4m﹣n)=n﹣m,∵∠GCQ+∠QCD=90°,∠QCD+∠CDQ=90°,∴∠GCQ=∠CDQ,∴△GCQ∽△CDQ,∴∴∴n=2m,∴CQ=DI=2m,∴IQ=2m,∴tan∠CDG=,∵CD=1,∴CG=,∴GO=CO﹣CG=,設直線DG的解析式為y=kx+,將點D(1,1)代入,得,k=,∴yDG=,設點F(t,﹣t2+t+1),則﹣t2+t+1=t+,解得,t1=1(舍去),t2=﹣,∴F(﹣,)過點F作DC的垂線,交DC的延長線于點U,則,∴在Rt△UFD中,DF=,由翻折知,△NPM≌△NPT,∴∠MNP=∠TNP,NM=NT=ND,∠TPN=∠MPN,TP=MP,又∵NS⊥KD,∴∠DNS=∠TNS,DS=TS,∴∠SNK=∠TNP+∠TNS=×90°=45°,∴∠SKN=45°,∵∠TPK=180°﹣∠TPN,∠MPK=180°﹣∠MPN,∴∠TPK=∠MPK,又∵PK=PK,∴△TPK≌△MPK(SAS),∴∠MKP=∠TKP=45°,∴∠DKM=∠MKP+∠TKP=90°,連接FN,DM,交點為R,再連接RK,則RK=RF=RD=RN=RM,則點F,D,N,M,K同在⊙R上,F(xiàn)N為直徑,∴∠FKN=90°,∠KDN=∠KFN,∵FN=,∴在Rt△FKN中,∴cos∠KDN=cos∠KFN.【點睛】考核知識點:二次函數(shù)綜合題.熟記二次函數(shù)基本性質(zhì),數(shù)形結(jié)合分析問題是關(guān)鍵.25、(1),點的坐標為(2)線段與線段平行且相等(3)或1(4)存在;點的坐標為(0,3)或(,2)【分析】(1)直線y=x+1與拋物線交于A點,可得點A和點E坐標,則點B、C的坐標分別為:(3,0)、(0,3),即可求解;(2)CQ==AE,直線AQ和AE的傾斜角均為45°,即可求解;(3)根據(jù)題意將△APD的面積和△DAB的面積表示出來,令其相等,即可解出m的值;(4)分∠QOH=90°、∠PQH=90°、∠QHP=90°三種情況,分別求解即可.【詳解】解:(1)直線與拋物線交于點,則點、點.∵,∴點的坐標為,故拋物線的表達式為,將點的坐

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論