版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年四川省宜賓市名校數(shù)學九上期末聯(lián)考模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區(qū)域內作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(每小題3分,共30分)1.下列幾何體中,主視圖和左視圖都是矩形的是()A. B. C. D.2.四張分別畫有平行四邊形、等腰直角三角形、正五邊形、圓的卡片,它們的背面都相同,現(xiàn)將它們背面朝上,從中任取一張,卡片上所畫圖形恰好是中心對稱圖形的概率是()A. B. C. D.13.若A(﹣3,y1),,C(2,y3)在二次函數(shù)y=x2+2x+c的圖象上,則y1,y2,y3的大小關系是()A.y2<y1<y3 B.y1<y3<y2 C.y1<y2<y3 D.y3<y2<y14.在下列四個圖案中,既是軸對稱圖形,又是中心對稱圖形的是()A. B. C. D.5.如圖,,,是⊙上的三個點,如果∠°,那么∠的度數(shù)為()A. B. C. D.6.在中,,,則的值為()A. B. C. D.7.如圖,在正方形紙片ABCD中,E,F(xiàn)分別是AD,BC的中點,沿過點B的直線折疊,使點C落在EF上,落點為N,折痕交CD邊于點M,BM與EF交于點P,再展開.則下列結論中:①CM=DM;②∠ABN=30°;③AB2=3CM2;④△PMN是等邊三角形.正確的有()A.1個 B.2個 C.3個 D.4個8.一次函數(shù)與二次函數(shù)在同一平面直角坐標系中的圖象可能是().A. B. C. D.9.把二次函數(shù)配方后得()A. B.C. D.10.如圖,,兩條直線與三條平行線分別交于點和.已知,則的值為()A. B. C. D.二、填空題(每小題3分,共24分)11.若⊙P的半徑為5,圓心P的坐標為(﹣3,4),則平面直角坐標系的原點O與⊙P的位置關系是_____.12.方程的兩根為,,則=.13.如圖三角形ABC是圓O的內接正三角形,弦EF經過BC邊的中點D,且EF平行AB,若AB等于6,則EF等于________.14.如果三角形有一邊上的中線長恰好等于這邊的長,那么稱這個三角形為“好玩三角形”,在△ABC中,AB=AC,若△ABC是“好玩三角形”,則tanB____________。15.如圖,⊙O的半徑為6cm,直線AB是⊙O的切線,切點為點B,弦BC∥AO,若∠A=30°,則劣弧的長為cm.16.如圖,正方形ABCD中,M為BC上一點,ME⊥AM,ME交CD于點F,交AD的延長線于點E,若AB=4,BM=2,則的面積為_____________.17.如圖,在平面直角坐標系中,矩形的兩邊在其坐標軸上,以軸上的某一點為位似中心作矩形,使它與矩形位似,且點,的坐標分別為,,則點的坐標為__________.18.如圖,PA,PB是⊙O的切線,切點分別是點A和B,AC是⊙O的直徑.若∠P=60°,PA=6,則BC的長為__________.三、解答題(共66分)19.(10分)如圖,在平面直角坐標系中,反比例函數(shù)的圖象與一次函數(shù)的圖象的一個交點為.(1)求這個反比例函數(shù)的解析式;(2)求兩個函數(shù)圖像的另一個交點的坐標;并根據(jù)圖象,直接寫出關于的不等式的解集.
20.(6分)解方程:x2-4x-7=0.21.(6分)如圖,一次函數(shù)y=k1x+b的圖象與反比例函數(shù)y=的圖象相交于A,B兩點,點A的坐標為(﹣1,3),點B的坐標為(3,n).(1)求這兩個函數(shù)的表達式;(2)點P在線段AB上,且S△APO:S△BOP=1:3,求點P的坐標.22.(8分)解下列方程(1);(2).23.(8分)沙坪壩正在創(chuàng)建全國文明城市,其中垃圾分類是一項重要的舉措.現(xiàn)隨機抽查了沙區(qū)部分小區(qū)住戶12月份某周內“垃圾分類”的實施情況,并繪制成了以下兩幅不完整的統(tǒng)計圖,圖中表示實施天數(shù)小于5天,表示實施天數(shù)等于5天,表示實施天數(shù)等于6天,表示實施天數(shù)等于7天.(1)求被抽查的總戶數(shù);(2)補全條形統(tǒng)計圖;(3)求扇形統(tǒng)計圖中的圓心角的度數(shù).24.(8分)如圖,四邊形ABCD為圓內接四邊形,對角線AC、BD交于點E,延長DA、CB交于點F.(1)求證:△FBD∽△FAC;(2)如果BD平分∠ADC,BD=5,BC=2,求DE的長;(3)如果∠CAD=60°,DC=DE,求證:AE=AF.25.(10分)如圖,在平面直角坐標系中,拋物線的頂點坐標為,與軸交于點,與軸交于點,.(1)求二次函數(shù)的表達式;(2)過點作平行于軸,交拋物線于點,點為拋物線上的一點(點在上方),作平行于軸交于點,當點在何位置時,四邊形的面積最大?并求出最大面積.26.(10分)某中學開展“唱紅歌”比賽活動,九年級(1)、(2)班根據(jù)初賽成績,各選出5名選手參加復賽,兩個班各選出5名選手參加復賽,兩個班各選出的5名選手的復賽成績(滿分為100分)如圖所示.(1)根據(jù)圖示填寫下表:班級中位數(shù)(分)眾數(shù)(分)九(1)85九(2)100(2)通過計算得知九(2)班的平均成績?yōu)?5分,請計算九(1)班的平均成績.(3)結合兩班復賽成績的平均數(shù)和中位數(shù),分析哪個班級的復賽成績較好.(4)已知九(1)班復賽成績的方差是70,請計算九(2)班的復賽成績的方差,并說明哪個班的成績比較穩(wěn)定?
參考答案一、選擇題(每小題3分,共30分)1、C【分析】主視圖、左視圖是分別從物體正面、左面和上面看,所得到的圖形.依此即可求解.【詳解】A.主視圖為圓形,左視圖為圓,故選項錯誤;B.主視圖為三角形,左視圖為三角形,故選項錯誤;C.主視圖為矩形,左視圖為矩形,故選項正確;D.主視圖為矩形,左視圖為圓形,故選項錯誤.故答案選:C.【點睛】本題考查的知識點是截一個幾何體,解題的關鍵是熟練的掌握截一個幾何體.2、B【分析】先找出卡片上所畫的圖形是中心對稱圖形的個數(shù),再除以總數(shù)即可.【詳解】解:∵四張卡片中中心對稱圖形有平行四邊形、圓,共2個,∴卡片上所畫的圖形恰好是中心對稱圖形的概率為,故選B.【點睛】此題考查概率公式:如果一個事件有n種可能,而且這些事件的可能性相同,其中事件A出現(xiàn)m種結果,那么事件A的概率P(A)=,關鍵是找出卡片上所畫的圖形是中心對稱圖形的個數(shù).3、A【分析】求出二次函數(shù)的對稱軸,再根據(jù)二次函數(shù)的增減性判斷即可.【詳解】解:對稱軸為直線x=﹣=﹣1,∵a=1>0,∴x<﹣1時,y隨x的增大而減小,x>﹣1時,y隨x的增大而增大,∴y2<y1<y1.故選:A.【點睛】本題考查了二次函數(shù)圖象上點的坐標特征,求出對稱軸解析式,然后利用二次函數(shù)的增減性求解是解題的關鍵.4、B【分析】根據(jù)軸對稱圖形與中心對稱圖形的概念判定即可.【詳解】解:A、不是軸對稱圖形,也是中心對稱圖形B、是軸對稱圖形,也是中心對稱圖形;C、是軸對稱圖形,也不是中心對稱圖形;D、不是軸對稱圖形,也不是中心對稱圖形.故答案為B.【點睛】本題考查了中心對稱圖形與軸對稱圖形的概念,掌握軸對稱和中心對稱概念的區(qū)別是解答本題的關鍵.5、C【分析】在弧AB上取一點D,連接AD,BD,利用圓周角定理可知,再利用圓內接四邊形的性質即可求出∠的度數(shù).【詳解】如圖,在弧AB上取一點D,連接AD,BD,則∴故選C【點睛】本題主要考查圓周角定理及圓內接四邊形的性質,掌握圓周角定理及圓內接四邊形的性質是解題的關鍵.6、C【解析】在中,先求出的度數(shù),再根據(jù)特殊角的三角函數(shù)值即可得出答案.【詳解】,=故選C.【點睛】本題考查了銳角三角函數(shù),熟練掌握特殊角的三角函數(shù)值是解題的關鍵.7、C【解析】∵△BMN是由△BMC翻折得到的,∴BN=BC,又點F為BC的中點,在Rt△BNF中,sin∠BNF=,∴∠BNF=30°,∠FBN=60°,∴∠ABN=90°-∠FBN=30°,故②正確;在Rt△BCM中,∠CBM=∠FBN=30°,∴tan∠CBM=tan30°=,∴BC=CM,AB2=3CM2故③正確;∠NPM=∠BPF=90°-∠MBC=60°,∠NMP=90°-∠MBN=60°,∴△PMN是等邊三角形,故④正確;由題給條件,證不出CM=DM,故①錯誤.故正確的有②③④,共3個.故選C.8、C【分析】逐一分析四個選項,根據(jù)二次函數(shù)圖象的開口方向以及對稱軸與y軸的位置關系,即可得出a、b的正負性,由此即可得出一次函數(shù)圖象經過的象限,即可得出結論.【詳解】A.∵二次函數(shù)圖象開口向下,對稱軸在y軸左側,∴a<0,b<0,∴一次函數(shù)圖象應該過第二、三、四象限,故本選項錯誤;B.∵二次函數(shù)圖象開口向上,對稱軸在y軸右側,∴a>0,b<0,∴一次函數(shù)圖象應該過第一、三、四象限,故本選項錯誤;C.∵二次函數(shù)圖象開口向下,對稱軸在y軸左側,∴a<0,b<0,∴一次函數(shù)圖象應該過第二、三、四象限,故本選項正確;D.∵二次函數(shù)圖象開口向下,對稱軸在y軸左側,∴a<0,b<0,∴一次函數(shù)圖象應該過第二、三、四象限,故本選項錯誤.故選C.【點睛】本題主要考查二次函數(shù)圖象與一次函數(shù)圖象的綜合,掌握二次函數(shù)與一次函數(shù)系數(shù)與圖象的關系,是解題的關鍵.9、B【分析】運用配方法把一般式化為頂點式即可.【詳解】解:==故選:B【點睛】本題考查的是二次函數(shù)的三種形式,正確運用配方法把一般式化為頂點式是解題的關鍵.10、C【分析】由得設可得答案.【詳解】解:,,設則故選C.【點睛】本題考查的是平行線分線段成比例,比例線段,掌握這兩個知識點是解題的關鍵.二、填空題(每小題3分,共24分)11、點O在⊙P上【分析】由勾股定理等性質算出點與圓心的距離d,則d>r時,點在圓外;當d=r時,點在圓上;當d<r時,點在圓內.【詳解】解:由勾股定理,得OP==5,d=r=5,故點O在⊙P上.故答案為點O在⊙P上.【點睛】此題考查點與圓的位置關系的判斷.解題關鍵在于要記住若半徑為r,點到圓心的距離為d,則有:當d>r時,點在圓外;當d=r時,點在圓上,當d<r時,點在圓內.12、.【解析】試題分析:∵方程的兩根為,,∴,,∴===.故答案為.考點:根與系數(shù)的關系.13、【分析】設AC與EF交于點G,由于EF∥AB,且D是BC中點,易得DG是△ABC的中位線,即DG=3;易知△CDG是等腰三角形,可過C作AB的垂線,交EF于M,交AB于N;然后證DE=FG,根據(jù)相交弦定理得BD?DC=DE?DF,而BD、DC的長易知,DF=3+DE,由此可得到關于DE的方程,即可求得DE的長,EF=DF+DE=3+2DE,即可求得EF的長;【詳解】解:如圖,過C作CN⊥AB于N,交EF于M,則CM⊥EF,根據(jù)圓和等邊三角形的性質知:CN必過點O,∵EF∥AB,D是BC的中點,∴DG是△ABC的中位線,即DG=AB=3;∵∠ACB=60°,BD=DC=BC,AG=GC=AC,且BC=AC,∴△CGD是等邊三角形,∵CM⊥DG,∴DM=MG;∵OM⊥EF,由垂徑定理得:EM=MF,故DE=GF,∵弦BC、EF相交于點D,∴BD×DC=DE×DF,即DE×(DE+3)=3×3;解得DE=或(舍去);∴EF=3+2×=;【點睛】本題主要考查了相交弦定理,等邊三角形的性質,三角形中位線定理,垂徑定理,掌握相交弦定理,等邊三角形的性質,三角形中位線定理,垂徑定理是解題的關鍵.14、1或【分析】分兩種情形分別求解即可解決問題.【詳解】①如圖1中,取BC的中點H,連接AH.∵AB=AC,BH=CH,∴AH⊥BC,設BC=AH=1a,則BH=CH=a,∴tanB==1.②取AB的中點M,連接CM,作CN⊥AM于N,如圖1.設CM=AB=AC=4a,則BM=AM=1a,∵CN⊥AM,CM=CA,∴AN=NM=a,在Rt△CNM中,CN=,∴tanB=,故答案為1或.【點睛】本題考查解直角三角形、等腰三角形的性質、“好玩三角形”的定義等知識,解題的關鍵是理解題意,靈活運用所學知識解決問題.15、.【解析】根據(jù)切線的性質可得出OB⊥AB,從而求出∠BOA的度數(shù),利用弦BC∥AO,及OB=OC可得出∠BOC的度數(shù),代入弧長公式即可得出答案:∵直線AB是⊙O的切線,∴OB⊥AB(切線的性質).又∵∠A=30°,∴∠BOA=60°(直角三角形兩銳角互余).∵弦BC∥AO,∴∠CBO=∠BOA=60°(兩直線平行,內錯角相等).又∵OB=OC,∴△OBC是等邊三角形(等邊三角形的判定).∴∠BOC=60°(等邊三角形的每個內角等于60°).又∵⊙O的半徑為6cm,∴劣弧的長=(cm).16、1【分析】先根據(jù)正方形的性質可得,從而可得,再根據(jù)相似三角形的判定與性質可得,從而可得CF的長,又根據(jù)線段的和差可得DF的長,然后根據(jù)相似三角形的判定與性質可得,從而可得出DE的長,最后根據(jù)直角三角形的面積公式即可得.【詳解】四邊形ABCD是正方形,,即在和中,,即解得又,即,即解得則的面積為故答案為:1.【點睛】本題考查了正方形的性質、相似三角形的判定定理與性質等知識點,熟練掌握相似三角形的判定定理與性質是解題關鍵.17、【分析】首先求出位似圖形的位似中心坐標,然后即可得出點D的坐標.【詳解】連接BF交軸于P,如圖所示:∵矩形和矩形,點,的坐標分別為,,∴點C的坐標為∵BC∥GF∴∴GP=1,PC=2,OP=3∴點P即為其位似中心∴OD=6∴點D坐標為故答案為:.【點睛】此題主要考查位似圖形的性質,熟練掌握,即可解題.18、【分析】連接AB,根據(jù)PA,PB是⊙O的切線可得PA=PB,從而得出AB=6,然后利用∠P=60°得出∠CAB為30°,最后根據(jù)直角三角形中30°角的正切值進一步計算即可.【詳解】如圖,連接AB,∵PA,PB是⊙O的切線,∴PA=PB,∵∠P=60°,∴△ABP為等邊三角形,∴AB=6,∵∠P=60°,∴∠CAB=30°,易得△ABC為直角三角形,∴,∴BC=AB×=,故答案為:.【點睛】本題主要考查了圓中切線長與三角函數(shù)的綜合運用,熟練掌握相關概念是解題關鍵.三、解答題(共66分)19、(1)(2)或【分析】(1)把A坐標代入一次函數(shù)解析式求出a的值,確定出A的坐標,再代入反比例解析式求出k的值,即可確定出反比例解析式;(2)解析式聯(lián)立求得B的坐標,然后根據(jù)圖象即可求得.【詳解】解:(1)∵點在一次函數(shù)圖象上,∴∴∴∵點在反比例函數(shù)的圖象上,∴.∴(2)由或∴由圖象可知,的解集是或.
【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題、一次函數(shù)圖象上點的坐標特征以及反比例函數(shù)圖象上點的坐標特征,根據(jù)一次函數(shù)圖象上點的坐標特征求出點A、B的坐標是解題的關鍵.20、【解析】x2-4x-7=0,∵a=1,b=-4,c=-7,∴△=(-4)2-4×1×(-7)=44>0,∴x=,∴.21、(1)反比例函數(shù)解析式為y=﹣;一次函數(shù)解析式為y=﹣x+2;(2)P點坐標為(0,2).【分析】(1))先把點A點坐標代入y=中求出k2得到反比例函數(shù)解析式為y=-;再把B(3,n)代入y=-中求出n得到得B(3,-1),然后利用待定系數(shù)法求一次函數(shù)解析式;(2)設P(x,-x+2),利用三角形面積公式得到AP:PB=1:3,即PB=3PA,根據(jù)兩點間的距離公式得到(x-3)2+(-x+2+1)2=9[(x+1)2+(-x+2-3)2],然后解方程求出x即可得到P點坐標.【詳解】(1)把點A(﹣1,3)代入y=得k2=﹣1×3=﹣3,則反比例函數(shù)解析式為y=﹣;把B(3,n)代入y=﹣得3n=﹣3,解得n=﹣1,則B(3,﹣1),把A(﹣1,3),B(3,﹣1)代入y=k1x+b得,解得,∴一次函數(shù)解析式為y=﹣x+2;(2)設P(x,﹣x+2),∵S△APO:S△BOP=1:3,∴AP:PB=1:3,即PB=3PA,∴(x﹣3)2+(﹣x+2+1)2=9[(x+1)2+(﹣x+2﹣3)2],解得x1=0,x2=﹣3(舍去),∴P點坐標為(0,2).【點睛】本題考查了反比例函數(shù)與一次函數(shù)的交點問題:求反比例函數(shù)與一次函數(shù)的交點坐標,把兩個函數(shù)關系式聯(lián)立成方程組求解,若方程組有解則兩者有交點,方程組無解,則兩者無交點.也考查了待定系數(shù)法求函數(shù)解析式.22、(1),;(2),.【分析】(1)利用因式分解法解方程;(2)先變形為(2x-1)2-(x-3)2=0,然后利用因式分解法解方程.【詳解】(1),或,所以,;(2),,或,所以,.【點睛】本題考查了解一元二次方程-因式分解法:因式分解法就是先把方程的右邊化為0,再把左邊通過因式分解化為兩個一次因式的積的形式,那么這兩個因式的值就都有可能為0,這就能得到兩個一元一次方程的解,這樣也就把原方程進行了降次,把解一元二次方程轉化為解一元一次方程的問題了(數(shù)學轉化思想).23、(1)600;(2)詳見解析;(3)72°【分析】(1)根據(jù)統(tǒng)計圖可得,被抽查的總戶數(shù)為;(2)先求出B,D對應的戶數(shù),再畫圖;D:(戶);B:(戶)(3)根據(jù)扇形統(tǒng)計圖定義,B的圓心角度數(shù)為【詳解】解:(1)被抽查的總戶數(shù)為=600(2)D:=180(戶)B:(戶)條形統(tǒng)計圖如圖所示:(3)B的圓心角度數(shù)為【點睛】考核知識點:條形圖和扇形統(tǒng)計圖.理解統(tǒng)計圖意義,從統(tǒng)計圖分析信息是關鍵.24、(1)見解析;(2);(3)見解析【分析】(1)可得出∠ADB=∠ACB,∠AFC=∠BFD,則結論得證;(2)證明△BEC∽△BCD,可得,可求出BE長,則DE可求出;(3)根據(jù)圓內接四邊形的性質和三角形的內角和定理進行證明AB=AF;根據(jù)等腰三角形的判定與性質和圓周角定理可證明AE=AB,則結論得出.【詳解】(1)證明:∵∠ADB=∠ACB,∠AFC=∠BFD,∴△FBD∽△FAC;(2)解:∵BD平分∠ADC,∴∠ADB=∠BDC,∵∠ADB=∠ACB,∴∠ACB=∠BDC,∵∠EBC=∠CBD,∴△BEC∽△BCD,∴,∴,∴BE=,∴DE=BD﹣BE=5﹣=;(3)證明:∵∠CAD=60°,∴∠CBD=60°,∠ACD=∠ABD,∵DC=DE,∴∠ACD=∠DEC,∵∠ABC+∠ADC=∠ABC+∠ABF=180°,∴∠FBD=180°,∴∠ABF=∠ADC=120°=120°﹣∠ACD=120°﹣∠DEC=120°﹣(60°+∠ADE)=60°﹣∠ADE,而∠F=60°﹣∠ACF,∵∠ACF=∠ADE,∴∠ABF=∠F,∴AB=AF.∵四邊形ABCD內接于圓,∴∠ABD=∠ACD,又∵DE=DC,∴∠DCE=∠DEC=∠AEB,∴∠ABD=∠AEB,∴AB=AE.∴AE=AF.【點睛】本題是圓的綜合題,考查了圓內接四邊形的性質,圓周角定理,相似三角形的判定與性質,等腰三角形的判定與性質,角平分線的性質,三角形的內角和定理等知識,熟練掌握相似三角形的判定與性質是解題的關鍵.25、(1);(2)點的坐標為時,【分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 土石方工程施工合作協(xié)議范本
- 砌磚分包商合同模板
- 旅游租車協(xié)議書范本
- 蔬菜采購合同的修改記錄
- 二手房屋買賣合同范本點評
- 工程勞務分包結算單填寫指南
- 雞苗買賣合同示例
- 國際采購合同條款解析
- 河北工程分包協(xié)議樣本
- 保健品交易合同
- 9m跨度輕型屋面三角形鋼屋架設計說明書
- CA6140撥叉831002課程設計工序卡
- 全國醫(yī)療服務價格項目規(guī)范(2012年版)
- MATLAB論文基于MATLAB的自動控制系統(tǒng)及案例分析
- 化學元素周期表word版(可打印)
- 車友會活動策劃方案PPT
- 英語演講稿——Healthy Lifestyle
- 法院立案送達地址確認書
- 電氣設備拆除工程施工方案
- GB_T 20981-2021 面包質量通則(高清-現(xiàn)行)
- 企業(yè)標準化管理辦法
評論
0/150
提交評論