版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2023-2024學年山東省濱州市五校數(shù)學九年級第一學期期末調研模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.關于的一元二次方程根的情況是()A.有兩個不相等的實數(shù)根 B.有兩個相等的實數(shù)根C.沒有實數(shù)根 D.根的情況無法判斷2.已知二次函數(shù)的圖象如圖所示,分析下列四個結論:①abc<0;②b2-4ac>0;③;④a+b+c<0.其中正確的結論有()A.1個 B.2個 C.3個 D.4個3.把多項式分解因式,結果正確的是()A. B.C. D.4.如圖,、、、是上的四點,,,則的度數(shù)是()A. B. C. D.5.如圖,在△ABC中,點D,E分別在AB,AC上,DE∥BC,且DE將△ABC分成面積相等的兩部分,那么的值為()A.﹣1 B.+1 C.1 D.6.某中學籃球隊12名隊員的年齡情況如下:年齡(單位:歲)1415161718人數(shù)15321則這個隊隊員年齡的眾數(shù)和中位數(shù)分別是()A.15,16 B.15,15 C.15,15.5 D.16,157.要得到拋物線y=2(x﹣4)2+1,可以將拋物線y=2x2()A.向左平移4個單位長度,再向上平移1個單位長度B.向左平移4個單位長度,再向下平移1個單位長度C.向右平移4個單位長度,再向上平移1個單位長度D.向右平移4個單位長度,再向下平移1個單位長度8.如圖,現(xiàn)有兩個相同的轉盤,其中一個分為紅、黃兩個相等的區(qū)域,另一個分為紅、黃、藍三個相等的區(qū)域,隨即轉動兩個轉盤,轉盤停止后指針指向相同顏色的概率為()A. B. C. D.9.商場舉行摸獎促銷活動,對于“抽到一等獎的概率為0.01”.下列說法正確的是()A.抽101次也可能沒有抽到一等獎B.抽100次獎必有一次抽到一等獎C.抽一次不可能抽到一等獎D.抽了99次如果沒有抽到一等獎,那么再抽一次肯定抽到一等獎10.下列圖形中,既是中心對稱圖形,又是軸對稱圖形的是()A. B. C. D.11.的相反數(shù)是()A. B. C.2019 D.-201912.若式子有意義,則x的取值范圍為()A.x≥2 B.x≠3C.x≥2或x≠3 D.x≥2且x≠3二、填空題(每題4分,共24分)13.如圖,有一張矩形紙片,長15cm,寬9cm,在它的四角各剪去一個同樣的小正方形,然折疊成一個無蓋的長方體紙盒.若紙盒的底面(圖中陰影部分)面積是48cm2,求剪去的小正方形的邊長.設剪去的小正方形邊長是xcm,根據(jù)題意可列方程為_____.14.點(-2,5)關于原點對稱的點的坐標是_____________.15.如圖,Rt△ABC中,∠ACB=90°,AC=BC=,若把Rt△ABC繞邊AB所在直線旋轉一周,則所得幾何體的表面積為________(結果保留π).16.如圖,在矩形中,在上,在矩形的內部作正方形.當,時,若直線將矩形的面積分成兩部分,則的長為________.17.如圖,已知點P是△ABC的重心,過P作AB的平行線DE,分別交AC于點D,交BC于點E,作DF//BC,交AB于點F,若四邊形BEDF的面積為4,則△ABC的面積為__________18.分解因式:x3y﹣xy3=_____.三、解答題(共78分)19.(8分)如圖,拋物線y=-x2+bx+c與x軸交于點A(-1,0),與y軸交于點B(0,2),直線y=x-1與y軸交于點C,與x軸交于點D,點P是線段CD上方的拋物線上一動點,過點P作PF垂直x軸于點F,交直線CD于點E,(1)求拋物線的解析式;(2)設點P的橫坐標為m,當線段PE的長取最大值時,解答以下問題.①求此時m的值.②設Q是平面直角坐標系內一點,是否存在以P、Q、C、D為頂點的平行四邊形?若存在,直接寫出點Q的坐標;若不存在,請說明理由.20.(8分)一個不透明的口袋中裝有2個紅球(記為紅球1、紅球2)、1個白球、1個黑球,這些球除顏色外都相同,將球搖勻.(1)從中任意摸出1個球,恰好摸到紅球的概率是;(2)先從中任意摸出1個球,再從余下的3個球中任意摸出1個球,請用列舉法(畫樹狀圖或列表)求兩次都摸到紅球的概率.21.(8分)已知一個二次函數(shù)圖象上部分點的橫坐標與縱坐標的對應值如下表所示:............(1)求這個二次函數(shù)的表達式;(2)在給定的平面直角坐標系中畫出這個二次函數(shù)的圖象;(3)結合圖像,直接寫出當時,的取值范圍.22.(10分)2019年鞍山市出現(xiàn)了豬肉價格大幅上漲的情況,經過對我市某豬肉經銷商的調查發(fā)現(xiàn),當豬肉售價為60元/千克時,每天可以銷售80千克,日銷售利潤為1600元(不考慮其他因素對利潤的影響):售價每上漲1元,則每天少售出2千克;若設豬肉售價為x元/千克,日銷售量為y千克.(1)求y關于x的函數(shù)解析式(不要求寫出自變量的取值范圍);(2)若物價管理部門規(guī)定豬肉價格不高于68元/千克,當售價是多少元/千克時,日銷售利潤最大,最大利潤是多少元.23.(10分)如圖,AB是的直徑,點C,D在上,且BD平分∠ABC.過點D作BC的垂線,與BC的延長線相交于點E,與BA的延長線相交于點F.(1)求證:EF與相切:(2)若AB=3,BD=,求CE的長.24.(10分)2018年非洲豬瘟疫情暴發(fā)后,2019年豬肉價格不斷走高,引起了民眾與政府的高度關注,據(jù)統(tǒng)計:2019年12月份豬肉價格比2019年年初上漲了30%,某市民2019年12月3日在某超市購買1千克豬肉花了52元.(1)問:2019年年初豬肉的價格為每千克多少元?(2)某超市將進貨價為每千克39元的豬肉,按2019年12月3日價格出售,平均一天能銷售出100千克,經調查表明:豬肉的售價每千克下降1元,其日銷售量就增加10千克,超市為了實現(xiàn)銷售豬肉每天有1320元的利潤,并且盡可能讓顧客得到實惠,豬肉的售價應該下降多少元?25.(12分)如圖,把一個木制正方體的表面涂上顏色,然后將正方體分割成64個大小相同的小正方體.從這些小正方體中任意取出一個,求取出的小正方體:(1)三面涂有顏色的概率;(2)兩面涂有顏色的概率;(3)各個面都沒有顏色的概率.26.在如圖的小正方形網格中,每個小正方形的邊長均為,格點(頂點是網格線的交點)的三個頂點坐標分別是,以為位似中心在網格內畫出的位似圖△A1B1C1,使與的相似比為,并計算出的面積.
參考答案一、選擇題(每題4分,共48分)1、A【解析】若△>0,則方程有兩個不等式實數(shù)根,若△=0,則方程有兩個相等的實數(shù)根,若△<0,則方程沒有實數(shù)根.求出△與零的大小,結果就出來了.【詳解】解:∵△=,∴方程有兩個不相等的實數(shù)根【點睛】本題主要考查根的判別式,掌握一元二次方程的根的判別式是關鍵.2、B【解析】①由拋物線的開口方向,拋物線與y軸交點的位置、對稱軸即可確定a、b、c的符號,即得abc的符號;
②由拋物線與x軸有兩個交點判斷即可;③由,a<1,得到b>2a,所以2a-b<1;④由當x=1時y<1,可得出a+b+c<1.【詳解】解:①∵二次函數(shù)圖象開口向下,對稱軸在y軸左側,與y軸交于正半軸,
∴a<1,,c>1,∴b<1,
∴abc>1,結論①錯誤;
②∵二次函數(shù)圖象與x軸有兩個交點,
∴b2-4ac>1,結論②正確;③∵,a<1,
∴b>2a,
∴2a-b<1,結論③錯誤;
④∵當x=1時,y<1;
∴a+b+c<1,結論④正確.
故選:B.【點睛】本題考查了二次函數(shù)圖象與系數(shù)的關系.二次函數(shù)y=ax2+bx+c(a≠1)系數(shù)符號由拋物線開口方向、對稱軸、拋物線與y軸的交點拋物線與x軸交點的個數(shù)確定.3、B【分析】如果把乘法公式反過來,就可以把某些多項式分解因式,這種方法叫公式法.平方差公式:;完全平方公式:;【詳解】解:,故選B.【點睛】本題考查了分解因式,熟練運用平方差公式是解題的關鍵4、A【分析】根據(jù)垂徑定理得,結合和圓周角定理,即可得到答案.【詳解】∵,∴,∵,∴.故選:A.【點睛】本題主要考查垂徑定理和圓周角定理,掌握垂徑定理和圓周角定理是解題的關鍵.5、D【分析】由條件DE∥BC,可得△ADE∽△ABC,又由DE將△ABC分成面積相等的兩部分,可得S△ADE:S△ABC=1:1,根據(jù)相似三角形面積之比等于相似比的平方,可得答案.【詳解】如圖所示:∵DE∥BC,∴△ADE∽△ABC.設DE:BC=1:x,則由相似三角形的性質可得:S△ADE:S△ABC=1:x1.又∵DE將△ABC分成面積相等的兩部分,∴x1=1,∴x,即.故選:D.【點睛】本題考查了相似三角形的判定與性質,熟練掌握相似三角形的性質是解答本題的關鍵.6、C【分析】由題意直接根據(jù)眾數(shù)和中位數(shù)的定義求解可得.【詳解】解:∵這組數(shù)據(jù)中15出現(xiàn)5次,次數(shù)最多,∴眾數(shù)為15歲,中位數(shù)是第6、7個數(shù)據(jù)的平均數(shù),∴中位數(shù)為=15.5歲,故選:C.【點睛】本題考查眾數(shù)與中位數(shù),中位數(shù)是將一組數(shù)據(jù)從小到大(或從大到?。┲匦屡帕泻?,最中間的那個數(shù)(最中間兩個數(shù)的平均數(shù)),叫做這組數(shù)據(jù)的中位數(shù),如果中位數(shù)的概念掌握得不好,不把數(shù)據(jù)按要求重新排列,就會出錯;眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù).7、C【分析】找到兩個拋物線的頂點,根據(jù)拋物線的頂點即可判斷是如何平移得到.【詳解】∵y=2(x﹣4)2+1的頂點坐標為(4,1),y=2x2的頂點坐標為(0,0),∴將拋物線y=2x2向右平移4個單位,再向上平移1個單位,可得到拋物線y=2(x﹣4)2+1.故選:C.【點睛】本題考查了二次函數(shù)圖象與幾何變換,求出頂點坐標并抓住點的平移規(guī)律是解題關鍵.8、A【解析】先畫樹狀圖展示所有6種等可能的結果數(shù),找出停止后指針指向相同顏色的結果數(shù),然后根據(jù)概率公式計算.【詳解】畫樹狀圖如下:由樹狀圖知,共有6種等可能結果,其中轉盤停止后指針指向相同顏色的有2種結果,所以轉盤停止后指針指向相同顏色的概率為=,故選:A.【點睛】本題考查了列表法或樹狀圖法:通過列表法或樹狀圖法展示所有等可能的結果求出n,再從中選出符合事件A或B的結果數(shù)目m,然后根據(jù)概率公式求出事件A或B的概率.9、A【分析】根據(jù)概率是頻率(多個)的波動穩(wěn)定值,是對事件發(fā)生可能性大小的量的表現(xiàn)進行解答即可.【詳解】解:根據(jù)概率的意義可得“抽到一等獎的概率為為0.01”就是說抽100次可能抽到一等獎,也可能沒有抽到一等獎,抽一次也可能抽到一等獎,抽101次也可能沒有抽到一等獎.故選:A.【點睛】本題考查概率的意義,概率是對事件發(fā)生可能性大小的量的表現(xiàn).10、B【解析】根據(jù)中心對稱圖形的定義“是指在平面內,把一個圖形繞著某個點旋轉,如果旋轉后的圖形能與原來的圖形重合的圖形”和軸對稱圖形的定義“是指平面內,一個圖形沿著一條直線折疊,直線兩旁的部分能夠完全重合的圖形”逐項判斷即可.【詳解】A、既不是中心對稱圖形,也不是軸對稱圖形,此項不符題意B、既是中心對稱圖形,又是軸對稱圖形,此項符合題意C、是軸對稱圖形,但不是中心對稱圖形,此項不符題意D、是中心對稱圖形,但不是軸對稱圖形,此項不符題意故選:B.【點睛】本題考查了中心對稱圖形的定義和軸對稱圖形的定義,這是??键c,熟記定義是解題關鍵.11、A【解析】直接利用相反數(shù)的定義分析得出答案.【詳解】解:的相反數(shù)是:.故選A.【點睛】此題主要考查了相反數(shù),正確把握相反數(shù)的定義是解題關鍵.12、D【分析】求函數(shù)自變量的取值范圍,就是求函數(shù)解析式有意義的條件,根據(jù)二次根式被開方數(shù)必須是非負數(shù)和分式分母不為0的條件可得關于x的不等式組,解不等式組即可.【詳解】由題意,要使在實數(shù)范圍內有意義,必須且x≠3,故選D.二、填空題(每題4分,共24分)13、(15﹣2x)(9﹣2x)=1.【分析】設剪去的小正方形邊長是xcm,則紙盒底面的長為(15﹣2x)cm,寬為(9﹣2x)cm,根據(jù)長方形的面積公式結合紙盒的底面(圖中陰影部分)面積是1cm2,即可得出關于x的一元二次方程,此題得解.【詳解】解:設剪去的小正方形邊長是xcm,則紙盒底面的長為(15﹣2x)cm,寬為(9﹣2x)cm,根據(jù)題意得:(15﹣2x)(9﹣2x)=1.故答案是:(15﹣2x)(9﹣2x)=1.【點睛】此題主要考查一元二次方程的應用,解題的關鍵是根據(jù)題意找到等量關系進行列方程.14、(2,-5)【解析】點(-2,5)關于原點的對稱點的點的坐標是(2,-5).故答案為(2,-5).點睛:在平面直角坐標系中,點P(x,y)關于原點的對稱點的坐標是(-x,-y).15、【分析】過點C作CD⊥AB于點D,在Rt△ABC中,求出AB長,繼而求得CD長,繼而根據(jù)扇形面積公式進行求解即可.【詳解】過點C作CD⊥AB于點D,Rt△ABC中,∠ACB=90°,AC=BC,∴AB=AC=4,∴CD=2,以CD為半徑的圓的周長是:4π.故直線旋轉一周則所得的幾何體得表面積是:2××4π×=.故答案為.【點睛】本題考查了圓錐的計算,正確求出旋轉后圓錐的底面圓半徑是解題的關鍵.16、或【分析】分二種情形分別求解:①如圖1中,延長交于,當時,直線將矩形的面積分成兩部分.②如圖2中,延長交于交的延長線于,當時,直線將矩形的面積分成兩部分.【詳解】解:如圖1中,設直線交于,當時,直線將矩形的面積分成兩部分.,,,.如圖2中,設直線長交于交的延長線于,當時,直線將矩形的面積分成兩部分,易證∴,,,,.綜上所述,滿足條件的的值為或.故答案為:或.【點睛】本題屬于四邊形綜合題,考查了矩形的性質,全等三角形的判定和性質,平行線分線段成比例定理等知識,解題的關鍵是學會用分類討論的思想思考問題,屬于中考壓軸題.17、9【分析】連接CP交AB于點H,利用點P是重心得到=,得出S△DEC=4S△AFD,再由DE//BF證出,由此得到S△DEC=S△ABC,繼而得出S四邊形BEDF=S△ABC,從而求出△ABC的面積.【詳解】如圖,連接CP交AB于點H,∵點P是△ABC的重心,∴,∴,∵DF//BE,∴△AFD∽△DEC,∴S△DEC=4S△AFD,∵DE//BF,∴,△DEC∽△ABC,∴S△ABC=S△DEC,∴S四邊形BEDF=S△ABC,∵四邊形BEDF的面積為4,∴S△ABC=9故答案為:9.【點睛】此題考察相似三角形的判定及性質,做題中首先明確重心的意義,連接CP交AB于點H是解題的關鍵,由此得到邊的比例關系,再利用相似三角形的性質:面積的比等于相似比的平方推導出幾部分圖形的面積之間的關系,得到三角形ABC的面積.18、xy(x+y)(x﹣y).【解析】分析:首先提取公因式xy,再對余下的多項式運用平方差公式繼續(xù)分解.詳解:x3y﹣xy3=xy(x2﹣y2)=xy(x+y)(x﹣y).點睛:本題考查了用提公因式法和公式法進行因式分解,一個多項式有公因式,要首先提取公因式,然后再用其他方法進行因式分解,同時因式分解要徹底,直到不能分解為止.三、解答題(共78分)19、(1)y=﹣x1+x+1;(1)①m=;②存在以P、Q、C、D為頂點的四邊形是平行四邊形,點Q的坐標為【分析】(1)由題意利用待定系數(shù)法,即可求出拋物線的解析式;(1)①由題意分別用含m的代數(shù)式表示出點P,E的縱坐標,再用含m的代數(shù)式表示出PE的長,運用函數(shù)的思想即可求出其最大值;②根據(jù)題意對以P、Q、C、D為頂點的四邊形是平行四邊形分三種情況進行討論與分析求解.【詳解】解:(1)將A(﹣1,0),B(0,1)代入y=﹣x1+bx+c,得:,解得:b=1,c=1∴拋物線的解析式為y=﹣x1+x+1.(1)①∵直線y=x-1與y軸交于點C,與x軸交于點D,∴點C的坐標為(0,-1),點D的坐標為(1,0),∴0<m<1.∵點P的橫坐標為m,∴點P的坐標為(m,﹣m1+m+1),點E的坐標為(m,m+3),∴PE=﹣m1+m+1﹣(m+3)=﹣m1+m+3=﹣(m﹣)1+.∵﹣1<0,0<<1,∴當m=時,PE最長.②由①可知,點P的坐標為(,).以P、Q、C、D為頂點的四邊形是平行四邊形分三種情況(如圖所示):①以PD為對角線,點Q的坐標為;②以PC為對角線,點Q的坐標為;③以CD為對角線,點Q的坐標為.綜上所述:在(1)的情況下,存在以P、Q、C、D為頂點的四邊形是平行四邊形,點Q的坐標為.【點睛】本題考查二次函數(shù)圖像的綜合問題,解題關鍵是熟練掌握待定系數(shù)法求解析式、函數(shù)的思想求最大值以及平行四邊形的性質及平移規(guī)律等知識.20、(1)(2)【解析】試題分析:(1)因為總共有4個球,紅球有2個,因此可直接求得紅球的概率;(2)根據(jù)題意,列表表示小球摸出的情況,然后找到共12種可能,而兩次都是紅球的情況有2種,因此可求概率.試題解析:解:(1).(2)用表格列出所有可能的結果:第二次
第一次
紅球1
紅球2
白球
黑球
紅球1
(紅球1,紅球2)
(紅球1,白球)
(紅球1,黑球)
紅球2
(紅球2,紅球1)
(紅球2,白球)
(紅球2,黑球)
白球
(白球,紅球1)
(白球,紅球2)
(白球,黑球)
黑球
(黑球,紅球1)
(黑球,紅球2)
(黑球,白球)
由表格可知,共有12種可能出現(xiàn)的結果,并且它們都是等可能的,其中“兩次都摸到紅球”有2種可能.∴P(兩次都摸到紅球)==.考點:概率統(tǒng)計21、(1)或;(2)畫圖見解析;(3).【分析】(1)利用表中數(shù)據(jù)和拋物線的對稱性可得到二次函數(shù)的頂點坐標為(1,4),則可設頂點式y(tǒng)=a(x-1)2+4,然后把點(0,3)代入求出a即可;
(2)利用描點法畫二次函數(shù)圖象;
(3)根據(jù)x=、3時的函數(shù)值即可寫出y的取值范圍.【詳解】解:根據(jù)題意可知,二次函數(shù)的頂點坐標為(1,4),∴設二次函數(shù)的解析式為:,把代入得:;∴;∴解析式為:或.(2)如圖所示:(3)當時,;當時,;∵拋物線的對稱軸為:,此時y有最大值4;∴當時,的取值范圍為:.【點睛】本題考查了用待定系數(shù)法求二次函數(shù)的解析式:在利用待定系數(shù)法求二次函數(shù)關系式時,要根據(jù)題目給定的條件,選擇恰當?shù)姆椒ㄔO出關系式,從而代入數(shù)值求解.也考查了二次函數(shù)的圖象與性質.22、(1)y=200﹣2x;(2)售價是68元/千克時,日銷售利潤最大,最大利潤是1元【分析】(1)根據(jù)售價每上漲1元,則每天少售出2千克即可列出函數(shù)關系式;(2)根據(jù)(1)所得關系式,銷售利潤=每千克的利潤×銷售量列出二次函數(shù)關系式,再求出最值即可.【詳解】解:(1)根據(jù)題意,得設豬肉進價為a元/千克,(60﹣a)×80=1600,解得a=40,y=80﹣2(x﹣60)=200﹣2x.答:y與x的函數(shù)解析式為:y=200﹣2x.(2)設售價為x元時,日銷售利潤為w元,根據(jù)題意,得w=(x﹣40)(200﹣2x)=﹣2x2+280x﹣8000;=﹣2(x﹣70)2+1800∵﹣2<0,當x<70時,w隨x的增大而增大,∵物價管理部門規(guī)定豬肉價格不高于68元/千克,∴x=68時,w有最大值,最大值為1.答:當售價是68元/千克時,日銷售利潤最大,最大利潤是1元.【點睛】本題考查了二次函數(shù)的應用,解決本題的關鍵是掌握銷售問題的數(shù)量關系.23、(1)證明見解析;(2).【分析】(1)連接OD,由角平分線和等邊對等角,得到,則,即可得到結論成立;(2)連接,,,由勾股定理求出AD,然后證明,求出DE的長度,然后即可求出CE的長度.【詳解】(1)證明,如圖,連接.平分,.∵,....∵,..即.與相切.(2)如圖,連接,,.是的直徑,.在中,.∵,,.,即..∵,,,..在中,.【點睛】本題考查了相似三角形的性質和判定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025版?zhèn)€人車輛抵押債權債務處理專項協(xié)議4篇
- 二零二五年度房產置換及配套設施建設協(xié)議3篇
- 二零二五年度錨桿施工與地質災害防治合同4篇
- 二零二五年度出租車租賃與城市交通規(guī)劃合同4篇
- 個人二手房交易法律合同版
- 2025年度配電箱智能化改造項目合同4篇
- 2025年度個人之間房屋買賣稅費承擔合同范本3篇
- 二零二五版智能代賬系統(tǒng)應用服務合同2篇
- 2025年度鋁合金汽車零部件研發(fā)采購合同3篇
- 2025年護理院護理團隊建設與管理合同3篇
- 小兒甲型流感護理查房
- 霧化吸入療法合理用藥專家共識(2024版)解讀
- 2021年全國高考物理真題試卷及解析(全國已卷)
- 拆遷評估機構選定方案
- 趣味知識問答100道
- 鋼管豎向承載力表
- 2024年新北師大版八年級上冊物理全冊教學課件(新版教材)
- 人教版數(shù)學四年級下冊核心素養(yǎng)目標全冊教學設計
- JJG 692-2010無創(chuàng)自動測量血壓計
- 三年級下冊口算天天100題(A4打印版)
- CSSD職業(yè)暴露與防護
評論
0/150
提交評論