版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
湖南省常德市武陵區(qū)第一中學(xué)2024屆高三第5次月考試題數(shù)學(xué)試題試卷注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.從集合中隨機(jī)選取一個數(shù)記為,從集合中隨機(jī)選取一個數(shù)記為,則在方程表示雙曲線的條件下,方程表示焦點(diǎn)在軸上的雙曲線的概率為()A. B. C. D.2.已知復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點(diǎn)的坐標(biāo)為,則下列結(jié)論正確的是()A. B.復(fù)數(shù)的共軛復(fù)數(shù)是C. D.3.已知是球的球面上兩點(diǎn),,為該球面上的動點(diǎn).若三棱錐體積的最大值為36,則球的表面積為()A. B. C. D.4.已知,,是平面內(nèi)三個單位向量,若,則的最小值()A. B. C. D.55.下列判斷錯誤的是()A.若隨機(jī)變量服從正態(tài)分布,則B.已知直線平面,直線平面,則“”是“”的充分不必要條件C.若隨機(jī)變量服從二項(xiàng)分布:,則D.是的充分不必要條件6.給定下列四個命題:①若一個平面內(nèi)的兩條直線與另一個平面都平行,則這兩個平面相互平行;②若一個平面經(jīng)過另一個平面的垂線,則這兩個平面相互垂直;③垂直于同一直線的兩條直線相互平行;④若兩個平面垂直,那么一個平面內(nèi)與它們的交線不垂直的直線與另一個平面也不垂直.其中,為真命題的是()A.①和②B.②和③C.③和④D.②和④7.一個算法的程序框圖如圖所示,若該程序輸出的結(jié)果是,則判斷框中應(yīng)填入的條件是()A. B. C. D.8.設(shè)是虛數(shù)單位,,,則()A. B. C.1 D.29.若實(shí)數(shù)滿足的約束條件,則的取值范圍是()A. B. C. D.10.某程序框圖如圖所示,若輸出的,則判斷框內(nèi)為()A. B. C. D.11.定義在R上的偶函數(shù)滿足,且在區(qū)間上單調(diào)遞減,已知是銳角三角形的兩個內(nèi)角,則的大小關(guān)系是()A. B.C. D.以上情況均有可能12.已知表示兩條不同的直線,表示兩個不同的平面,且則“”是“”的()條件.A.充分不必要 B.必要不充分 C.充要 D.既不充分也不必要二、填空題:本題共4小題,每小題5分,共20分。13.已知為雙曲線:的左焦點(diǎn),直線經(jīng)過點(diǎn),若點(diǎn),關(guān)于直線對稱,則雙曲線的離心率為__________.14.動點(diǎn)到直線的距離和他到點(diǎn)距離相等,直線過且交點(diǎn)的軌跡于兩點(diǎn),則以為直徑的圓必過_________.15.已知實(shí)數(shù)滿足,則的最小值是______________.16.已知復(fù)數(shù)z1=1﹣2i,z2=a+2i(其中i是虛數(shù)單位,a∈R),若z1?z2是純虛數(shù),則a的值為_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在平面直角坐標(biāo)系xOy中,已知橢圓的離心率為,且過點(diǎn).為橢圓的右焦點(diǎn),為橢圓上關(guān)于原點(diǎn)對稱的兩點(diǎn),連接分別交橢圓于兩點(diǎn).⑴求橢圓的標(biāo)準(zhǔn)方程;⑵若,求的值;⑶設(shè)直線,的斜率分別為,,是否存在實(shí)數(shù),使得,若存在,求出的值;若不存在,請說明理由.18.(12分)設(shè)數(shù)列的前列項(xiàng)和為,已知.(1)求數(shù)列的通項(xiàng)公式;(2)求證:.19.(12分)已知的內(nèi)角、、的對邊分別為、、,滿足.有三個條件:①;②;③.其中三個條件中僅有兩個正確,請選出正確的條件完成下面兩個問題:(1)求;(2)設(shè)為邊上一點(diǎn),且,求的面積.20.(12分)在平面直角坐標(biāo)系xOy中,橢圓C:x2a2(1)求橢圓C的方程;(2)假設(shè)直線l:y=kx+m與橢圓C交于A,B兩點(diǎn).①若A為橢圓的上頂點(diǎn),M為線段AB中點(diǎn),連接OM并延長交橢圓C于N,并且ON=62OM,求OB的長;②若原點(diǎn)O到直線l的距離為1,并且21.(12分)在四棱錐中,底面是邊長為2的菱形,是的中點(diǎn).(1)證明:平面;(2)設(shè)是直線上的動點(diǎn),當(dāng)點(diǎn)到平面距離最大時,求面與面所成二面角的正弦值.22.(10分)已知向量,函數(shù).(1)求函數(shù)的最小正周期及單調(diào)遞增區(qū)間;(2)在中,三內(nèi)角的對邊分別為,已知函數(shù)的圖像經(jīng)過點(diǎn),成等差數(shù)列,且,求a的值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、A【解題分析】
設(shè)事件A為“方程表示雙曲線”,事件B為“方程表示焦點(diǎn)在軸上的雙曲線”,分別計算出,再利用公式計算即可.【題目詳解】設(shè)事件A為“方程表示雙曲線”,事件B為“方程表示焦點(diǎn)在軸上的雙曲線”,由題意,,,則所求的概率為.故選:A.【題目點(diǎn)撥】本題考查利用定義計算條件概率的問題,涉及到雙曲線的定義,是一道容易題.2、D【解題分析】
首先求得,然后根據(jù)復(fù)數(shù)乘法運(yùn)算、共軛復(fù)數(shù)、復(fù)數(shù)的模、復(fù)數(shù)除法運(yùn)算對選項(xiàng)逐一分析,由此確定正確選項(xiàng).【題目詳解】由題意知復(fù)數(shù),則,所以A選項(xiàng)不正確;復(fù)數(shù)的共軛復(fù)數(shù)是,所以B選項(xiàng)不正確;,所以C選項(xiàng)不正確;,所以D選項(xiàng)正確.故選:D【題目點(diǎn)撥】本小題考查復(fù)數(shù)的幾何意義,共軛復(fù)數(shù),復(fù)數(shù)的模,復(fù)數(shù)的乘法和除法運(yùn)算等基礎(chǔ)知識;考查運(yùn)算求解能力,推理論證能力,數(shù)形結(jié)合思想.3、C【解題分析】
如圖所示,當(dāng)點(diǎn)C位于垂直于面的直徑端點(diǎn)時,三棱錐的體積最大,設(shè)球的半徑為,此時,故,則球的表面積為,故選C.考點(diǎn):外接球表面積和椎體的體積.4、A【解題分析】
由于,且為單位向量,所以可令,,再設(shè)出單位向量的坐標(biāo),再將坐標(biāo)代入中,利用兩點(diǎn)間的距離的幾何意義可求出結(jié)果.【題目詳解】解:設(shè),,,則,從而,等號可取到.故選:A【題目點(diǎn)撥】此題考查的是平面向量的坐標(biāo)、模的運(yùn)算,利用整體代換,再結(jié)合距離公式求解,屬于難題.5、D【解題分析】
根據(jù)正態(tài)分布、空間中點(diǎn)線面的位置關(guān)系、充分條件與必要條件的判斷、二項(xiàng)分布及不等式的性質(zhì)等知識,依次對四個選項(xiàng)加以分析判斷,進(jìn)而可求解.【題目詳解】對于選項(xiàng),若隨機(jī)變量服從正態(tài)分布,根據(jù)正態(tài)分布曲線的對稱性,有,故選項(xiàng)正確,不符合題意;對于選項(xiàng),已知直線平面,直線平面,則當(dāng)時一定有,充分性成立,而當(dāng)時,不一定有,故必要性不成立,所以“”是“”的充分不必要條件,故選項(xiàng)正確,不符合題意;對于選項(xiàng),若隨機(jī)變量服從二項(xiàng)分布:,則,故選項(xiàng)正確,不符合題意;對于選項(xiàng),,僅當(dāng)時有,當(dāng)時,不成立,故充分性不成立;若,僅當(dāng)時有,當(dāng)時,不成立,故必要性不成立.因而是的既不充分也不必要條件,故選項(xiàng)不正確,符合題意.故選:D【題目點(diǎn)撥】本題考查正態(tài)分布、空間中點(diǎn)線面的位置關(guān)系、充分條件與必要條件的判斷、二項(xiàng)分布及不等式的性質(zhì)等知識,考查理解辨析能力與運(yùn)算求解能力,屬于基礎(chǔ)題.6、D【解題分析】
利用線面平行和垂直,面面平行和垂直的性質(zhì)和判定定理對四個命題分別分析進(jìn)行選擇.【題目詳解】當(dāng)兩個平面相交時,一個平面內(nèi)的兩條直線也可以平行于另一個平面,故①錯誤;由平面與平面垂直的判定可知②正確;空間中垂直于同一條直線的兩條直線還可以相交或者異面,故③錯誤;若兩個平面垂直,只有在一個平面內(nèi)與它們的交線垂直的直線才與另一個平面垂直,故④正確.綜上,真命題是②④.故選:D【題目點(diǎn)撥】本題考查命題真假的判斷,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識,考查空間想象能力,是中檔題.7、D【解題分析】
首先判斷循環(huán)結(jié)構(gòu)類型,得到判斷框內(nèi)的語句性質(zhì),然后對循環(huán)體進(jìn)行分析,找出循環(huán)規(guī)律,判斷輸出結(jié)果與循環(huán)次數(shù)以及的關(guān)系,最終得出選項(xiàng).【題目詳解】經(jīng)判斷此循環(huán)為“直到型”結(jié)構(gòu),判斷框?yàn)樘鲅h(huán)的語句,第一次循環(huán):;第二次循環(huán):;第三次循環(huán):,此時退出循環(huán),根據(jù)判斷框內(nèi)為跳出循環(huán)的語句,,故選D.【題目點(diǎn)撥】題主要考查程序框圖的循環(huán)結(jié)構(gòu)流程圖,屬于中檔題.解決程序框圖問題時一定注意以下幾點(diǎn):(1)不要混淆處理框和輸入框;(2)注意區(qū)分程序框圖是條件分支結(jié)構(gòu)還是循環(huán)結(jié)構(gòu);(3)注意區(qū)分當(dāng)型循環(huán)結(jié)構(gòu)和直到型循環(huán)結(jié)構(gòu);(4)處理循環(huán)結(jié)構(gòu)的問題時一定要正確控制循環(huán)次數(shù);(5)要注意各個框的順序,(6)在給出程序框圖求解輸出結(jié)果的試題中只要按照程序框圖規(guī)定的運(yùn)算方法逐次計算,直到達(dá)到輸出條件即可.8、C【解題分析】
由,可得,通過等號左右實(shí)部和虛部分別相等即可求出的值.【題目詳解】解:,,解得:.故選:C.【題目點(diǎn)撥】本題考查了復(fù)數(shù)的運(yùn)算,考查了復(fù)數(shù)相等的涵義.對于復(fù)數(shù)的運(yùn)算類問題,易錯點(diǎn)是把當(dāng)成進(jìn)行運(yùn)算.9、B【解題分析】
根據(jù)所給不等式組,畫出不等式表示的可行域,將目標(biāo)函數(shù)化為直線方程,平移后即可確定取值范圍.【題目詳解】實(shí)數(shù)滿足的約束條件,畫出可行域如下圖所示:將線性目標(biāo)函數(shù)化為,則將平移,平移后結(jié)合圖像可知,當(dāng)經(jīng)過原點(diǎn)時截距最小,;當(dāng)經(jīng)過時,截距最大值,,所以線性目標(biāo)函數(shù)的取值范圍為,故選:B.【題目點(diǎn)撥】本題考查了線性規(guī)劃的簡單應(yīng)用,線性目標(biāo)函數(shù)取值范圍的求法,屬于基礎(chǔ)題.10、C【解題分析】程序在運(yùn)行過程中各變量值變化如下表:KS是否繼續(xù)循環(huán)循環(huán)前11第一圈24是第二圈311是第三圈426是第四圈557是第五圈6120否故退出循環(huán)的條件應(yīng)為k>5?本題選擇C選項(xiàng).點(diǎn)睛:使用循環(huán)結(jié)構(gòu)尋數(shù)時,要明確數(shù)字的結(jié)構(gòu)特征,決定循環(huán)的終止條件與數(shù)的結(jié)構(gòu)特征的關(guān)系及循環(huán)次數(shù).尤其是統(tǒng)計數(shù)時,注意要統(tǒng)計的數(shù)的出現(xiàn)次數(shù)與循環(huán)次數(shù)的區(qū)別.11、B【解題分析】
由已知可求得函數(shù)的周期,根據(jù)周期及偶函數(shù)的對稱性可求在上的單調(diào)性,結(jié)合三角函數(shù)的性質(zhì)即可比較.【題目詳解】由可得,即函數(shù)的周期,因?yàn)樵趨^(qū)間上單調(diào)遞減,故函數(shù)在區(qū)間上單調(diào)遞減,根據(jù)偶函數(shù)的對稱性可知,在上單調(diào)遞增,因?yàn)?,是銳角三角形的兩個內(nèi)角,所以且即,所以即,.故選:.【題目點(diǎn)撥】本題主要考查函數(shù)值的大小比較,根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵.12、B【解題分析】
根據(jù)充分必要條件的概念進(jìn)行判斷.【題目詳解】對于充分性:若,則可以平行,相交,異面,故充分性不成立;若,則可得,必要性成立.故選:B【題目點(diǎn)撥】本題主要考查空間中線線,線面,面面的位置關(guān)系,以及充要條件的判斷,考查學(xué)生綜合運(yùn)用知識的能力.解決充要條件判斷問題,關(guān)鍵是要弄清楚誰是條件,誰是結(jié)論.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
由點(diǎn),關(guān)于直線對稱,得到直線的斜率,再根據(jù)直線過點(diǎn),可求出直線方程,又,中點(diǎn)在直線上,代入直線的方程,化簡整理,即可求出結(jié)果.【題目詳解】因?yàn)闉殡p曲線:的左焦點(diǎn),所以,又點(diǎn),關(guān)于直線對稱,,所以可得直線的方程為,又,中點(diǎn)在直線上,所以,整理得,又,所以,故,解得,因?yàn)?,所?故答案為【題目點(diǎn)撥】本題主要考查雙曲線的簡單性質(zhì),先由兩點(diǎn)對稱,求出直線斜率,再由焦點(diǎn)坐標(biāo)求出直線方程,根據(jù)中點(diǎn)在直線上,即可求出結(jié)果,屬于??碱}型.14、【解題分析】
利用動點(diǎn)到直線的距離和他到點(diǎn)距離相等,,可知動點(diǎn)的軌跡是以為焦點(diǎn)的拋物線,從而可求曲線的方程,將,代入,利用韋達(dá)定理,可得,從而可知以為直徑的圓經(jīng)過原點(diǎn)O.【題目詳解】設(shè)點(diǎn),由題意可得,,,可得,設(shè)直線的方程為,代入拋物線可得,,,,以AB為直徑的圓經(jīng)過原點(diǎn).故答案為:(0,0)【題目點(diǎn)撥】本題考查了拋物線的定義,考查了直線和拋物線的交匯問題,同時考查了方程的思想和韋達(dá)定理,考查了運(yùn)算能力,屬于中檔題.15、【解題分析】
先畫出不等式組對應(yīng)的可行域,再利用數(shù)形結(jié)合分析解答得解.【題目詳解】畫出不等式組表示的可行域如圖陰影區(qū)域所示.由題得y=-3x+z,它表示斜率為-3,縱截距為z的直線系,平移直線,易知當(dāng)直線經(jīng)過點(diǎn)時,直線的縱截距最小,目標(biāo)函數(shù)取得最小值,且.故答案為:-8【題目點(diǎn)撥】本題主要考查線性規(guī)劃問題,意在考查學(xué)生對這些知識的理解掌握水平和數(shù)形結(jié)合分析能力.16、-1【解題分析】
由題意,令即可得解.【題目詳解】∵z1=1﹣2i,z2=a+2i,∴,又z1?z2是純虛數(shù),∴,解得:a=﹣1.故答案為:﹣1.【題目點(diǎn)撥】本題考查了復(fù)數(shù)的概念和運(yùn)算,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)(3)【解題分析】試題分析:(1);(2)由橢圓對稱性,知,所以,此時直線方程為,故.(3)設(shè),則,通過直線和橢圓方程,解得,,所以,即存在.試題解析:(1)設(shè)橢圓方程為,由題意知:解之得:,所以橢圓方程為:(2)若,由橢圓對稱性,知,所以,此時直線方程為,由,得,解得(舍去),故.(3)設(shè),則,直線的方程為,代入橢圓方程,得,因?yàn)槭窃摲匠痰囊粋€解,所以點(diǎn)的橫坐標(biāo),又在直線上,所以,同理,點(diǎn)坐標(biāo)為,,所以,即存在,使得.18、(1)(2)證明見解析【解題分析】
(1)由已知可得,構(gòu)造等比數(shù)列即可求出通項(xiàng)公式;(2)當(dāng)時,由,可求,時,由,可證,驗(yàn)證時,不等式也成立,即可得證.【題目詳解】(1)由可得,,即,所以,解得,(2)當(dāng)時,,,當(dāng)時,,綜上,由可得遞增,,時;所以,綜上:故.【題目點(diǎn)撥】本題主要考查了遞推數(shù)列求通項(xiàng)公式,利用放縮法證明不等式,涉及等比數(shù)列的求和公式,屬于難題.19、(1);(2).【解題分析】
(1)先求出角,進(jìn)而可得出,則①②中有且只有一個正確,③正確,然后分①③正確和②③正確兩種情況討論,結(jié)合三角形的面積公式和余弦定理可求得的值;(2)計算出和,計算出,可得出,進(jìn)而可求得的面積.【題目詳解】(1)因?yàn)?,所以,得,,,為鈍角,與矛盾,故①②中僅有一個正確,③正確.顯然,得.當(dāng)①③正確時,由,得(無解);當(dāng)②③正確時,由于,,得;(2)如圖,因?yàn)?,,則,則,.【題目點(diǎn)撥】本題考查解三角形綜合應(yīng)用,涉及三角形面積公式和余弦定理的應(yīng)用,考查計算能力,屬于中等題.20、(1)x22+y2【解題分析】
(1)根據(jù)橢圓的幾何性質(zhì)可得到a2,b2;(2)聯(lián)立直線和橢圓,利用弦長公式可求得弦長AB,利用點(diǎn)到直線的距離公式求得原點(diǎn)到直線l的距離,從而可求得三角形面積,再用單調(diào)性求最值可得值域.【題目詳解】(1)因?yàn)閮山裹c(diǎn)與短軸的一個頂點(diǎn)的連線構(gòu)成等腰直角三角形,所以a=2又由右準(zhǔn)線方程為x=2,得到a2解得a=2,c=1,所以所以,橢圓C的方程為x2(2)①設(shè)B(x1,y1∵ON=6因?yàn)辄c(diǎn)B,N都在橢圓上,所以x122+y12所以O(shè)B=x②由原點(diǎn)O到直線l的距離為1,得|m|1+k2聯(lián)立直線l的方程與橢圓C的方程:y=kx+mx2設(shè)A(x1,y1OA=(1+k2)所以k△OAB的面積S==1因?yàn)镾=2λ(1-λ)在[并且當(dāng)λ=45時,S=225所以△OAB的面積S的范圍為[10【題目點(diǎn)撥】圓錐曲線中最值與范圍問題的常見求法:(1)幾何法:若題目的條件和結(jié)論能明顯體現(xiàn)幾何特征和意義,則考慮利用圖形性質(zhì)來解決;(2)代數(shù)法:若題目的條件和結(jié)論能體現(xiàn)一種明確的函數(shù)關(guān)系,則可首先建立目標(biāo)函數(shù),再求這個函數(shù)的最值.在利用代數(shù)法解決最值與范圍問題時常從以下幾個方面考慮:①利用判別式來構(gòu)造不等關(guān)系,從而確定參數(shù)的取值范圍;
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年人教版(2024)選擇性必修2地理下冊階段測試試卷
- 2025年北師大版九年級地理上冊階段測試試卷含答案
- 2024版水泥管購銷合同
- 2025年教科新版一年級語文上冊階段測試試卷
- 二零二五年度飛機(jī)購銷合同附帶航空器維修技術(shù)支持協(xié)議3篇
- 2025年人教版PEP二年級英語下冊月考試卷含答案
- 2025年冀教版拓展型課程生物下冊月考試卷含答案
- 2025年外研版必修1物理下冊階段測試試卷
- 二零二五年度物業(yè)管理改善服務(wù)協(xié)議2篇
- 《數(shù)控技術(shù)頂崗實(shí)習(xí)》課程標(biāo)準(zhǔn)
- 花飛香 古文學(xué)
- 國家礦山安全監(jiān)察局《金屬非金屬礦山重大事故隱患判定標(biāo)準(zhǔn)》
- 患者跌倒墜床的應(yīng)急預(yù)案試題及答案
- GB/T 24128-2018塑料塑料防霉劑的防霉效果評估
- 福建省地方標(biāo)準(zhǔn)《先張法預(yù)應(yīng)力混凝土管樁基礎(chǔ)技術(shù)規(guī)程》DBJ13-2023
- 危險作業(yè)監(jiān)護(hù)人員培訓(xùn)
- 職業(yè)病防治企業(yè)臺賬樣本
- 充電樁驗(yàn)收表
- 城市水環(huán)境新型污染物的去除新技術(shù)課件
- 中長期貸款按實(shí)際投向統(tǒng)計統(tǒng)計制度
- 鍋爐專業(yè)2020年防非停措施
評論
0/150
提交評論