版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
2024屆廣東省仲元中學(xué)高三預(yù)測(cè)密卷(新課標(biāo)II卷)數(shù)學(xué)試題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請(qǐng)用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號(hào)。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無(wú)效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知向量,,且與的夾角為,則x=()A.-2 B.2 C.1 D.-12.如圖是國(guó)家統(tǒng)計(jì)局公布的年入境游客(單位:萬(wàn)人次)的變化情況,則下列結(jié)論錯(cuò)誤的是()A.2014年我國(guó)入境游客萬(wàn)人次最少B.后4年我國(guó)入境游客萬(wàn)人次呈逐漸增加趨勢(shì)C.這6年我國(guó)入境游客萬(wàn)人次的中位數(shù)大于13340萬(wàn)人次D.前3年我國(guó)入境游客萬(wàn)人次數(shù)據(jù)的方差小于后3年我國(guó)入境游客萬(wàn)人次數(shù)據(jù)的方差3.若復(fù)數(shù)滿足,復(fù)數(shù)的共軛復(fù)數(shù)是,則()A.1 B.0 C. D.4.《九章算術(shù)》是我國(guó)古代數(shù)學(xué)名著,書(shū)中有如下問(wèn)題:“今有勾六步,股八步,問(wèn)勾中容圓,徑幾何?”其意思為:“已知直角三角形兩直角邊長(zhǎng)分別為6步和8步,問(wèn)其內(nèi)切圓的直徑為多少步?”現(xiàn)從該三角形內(nèi)隨機(jī)取一點(diǎn),則此點(diǎn)取自內(nèi)切圓的概率是()A. B. C. D.5.設(shè),均為非零的平面向量,則“存在負(fù)數(shù),使得”是“”的A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件6.設(shè)為拋物線的焦點(diǎn),,,為拋物線上三點(diǎn),若,則().A.9 B.6 C. D.7.已知函數(shù)是定義在R上的奇函數(shù),且滿足,當(dāng)時(shí),(其中e是自然對(duì)數(shù)的底數(shù)),若,則實(shí)數(shù)a的值為()A. B.3 C. D.8.i是虛數(shù)單位,若,則乘積的值是()A.-15 B.-3 C.3 D.159.若集合,則()A. B.C. D.10.由實(shí)數(shù)組成的等比數(shù)列{an}的前n項(xiàng)和為Sn,則“a1>0”是“S9>S8”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件11.已知函數(shù)(其中,,)的圖象關(guān)于點(diǎn)成中心對(duì)稱,且與點(diǎn)相鄰的一個(gè)最低點(diǎn)為,則對(duì)于下列判斷:①直線是函數(shù)圖象的一條對(duì)稱軸;②點(diǎn)是函數(shù)的一個(gè)對(duì)稱中心;③函數(shù)與的圖象的所有交點(diǎn)的橫坐標(biāo)之和為.其中正確的判斷是()A.①② B.①③ C.②③ D.①②③12.已知在平面直角坐標(biāo)系中,圓:與圓:交于,兩點(diǎn),若,則實(shí)數(shù)的值為()A.1 B.2 C.-1 D.-2二、填空題:本題共4小題,每小題5分,共20分。13.已知拋物線的對(duì)稱軸與準(zhǔn)線的交點(diǎn)為,直線與交于,兩點(diǎn),若,則實(shí)數(shù)__________.14.已知向量,,若滿足,且方向相同,則__________.15.已知滿足且目標(biāo)函數(shù)的最大值為7,最小值為1,則___________.16.在△ABC中,a=3,,B=2A,則cosA=_____.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)如圖,在三棱錐中,,,,平面平面,、分別為、中點(diǎn).(1)求證:;(2)求二面角的大小.18.(12分)在直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸,建立極坐標(biāo)系.已知點(diǎn)的直角坐標(biāo)為,過(guò)的直線與曲線相交于,兩點(diǎn).(1)若的斜率為2,求的極坐標(biāo)方程和曲線的普通方程;(2)求的值.19.(12分)如圖,為等腰直角三角形,,D為AC上一點(diǎn),將沿BD折起,得到三棱錐,且使得在底面BCD的投影E在線段BC上,連接AE.(1)證明:;(2)若,求二面角的余弦值.20.(12分)已知向量,.(1)求的最小正周期;(2)若的內(nèi)角的對(duì)邊分別為,且,求的面積.21.(12分)設(shè)的內(nèi)角的對(duì)邊分別為,已知.(1)求;(2)若為銳角三角形,求的取值范圍.22.(10分)如圖,三棱錐中,點(diǎn),分別為,的中點(diǎn),且平面平面.求證:平面;若,,求證:平面平面.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解題分析】
由題意,代入解方程即可得解.【題目詳解】由題意,所以,且,解得.故選:B.【題目點(diǎn)撥】本題考查了利用向量的數(shù)量積求向量的夾角,屬于基礎(chǔ)題.2、D【解題分析】
ABD可通過(guò)統(tǒng)計(jì)圖直接分析得出結(jié)論,C可通過(guò)計(jì)算中位數(shù)判斷選項(xiàng)是否正確.【題目詳解】A.由統(tǒng)計(jì)圖可知:2014年入境游客萬(wàn)人次最少,故正確;B.由統(tǒng)計(jì)圖可知:后4年我國(guó)入境游客萬(wàn)人次呈逐漸增加趨勢(shì),故正確;C.入境游客萬(wàn)人次的中位數(shù)應(yīng)為與的平均數(shù),大于萬(wàn)次,故正確;D.由統(tǒng)計(jì)圖可知:前年的入境游客萬(wàn)人次相比于后年的波動(dòng)更大,所以對(duì)應(yīng)的方差更大,故錯(cuò)誤.故選:D.【題目點(diǎn)撥】本題考查統(tǒng)計(jì)圖表信息的讀取以及對(duì)中位數(shù)和方差的理解,難度較易.處理問(wèn)題的關(guān)鍵是能通過(guò)所給統(tǒng)計(jì)圖,分析出對(duì)應(yīng)的信息,對(duì)學(xué)生分析問(wèn)題的能力有一定要求.3、C【解題分析】
根據(jù)復(fù)數(shù)代數(shù)形式的運(yùn)算法則求出,再根據(jù)共軛復(fù)數(shù)的概念求解即可.【題目詳解】解:∵,∴,則,∴,故選:C.【題目點(diǎn)撥】本題主要考查復(fù)數(shù)代數(shù)形式的運(yùn)算法則,考查共軛復(fù)數(shù)的概念,屬于基礎(chǔ)題.4、C【解題分析】
利用直角三角形三邊與內(nèi)切圓半徑的關(guān)系求出半徑,再分別求出三角形和內(nèi)切圓的面積,根據(jù)幾何概型的概率計(jì)算公式,即可求解.【題目詳解】由題意,直角三角形的斜邊長(zhǎng)為,利用等面積法,可得其內(nèi)切圓的半徑為,所以向次三角形內(nèi)投擲豆子,則落在其內(nèi)切圓內(nèi)的概率為.故選:C.【題目點(diǎn)撥】本題主要考查了面積比的幾何概型的概率的計(jì)算問(wèn)題,其中解答中熟練應(yīng)用直角三角形的性質(zhì),求得其內(nèi)切圓的半徑是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力.5、B【解題分析】
根據(jù)充分條件、必要條件的定義進(jìn)行分析、判斷后可得結(jié)論.【題目詳解】因?yàn)?,均為非零的平面向量,存在?fù)數(shù),使得,所以向量,共線且方向相反,所以,即充分性成立;反之,當(dāng)向量,的夾角為鈍角時(shí),滿足,但此時(shí),不共線且反向,所以必要性不成立.所以“存在負(fù)數(shù),使得”是“”的充分不必要條件.故選B.【題目點(diǎn)撥】判斷p是q的什么條件,需要從兩方面分析:一是由條件p能否推得條件q;二是由條件q能否推得條件p,定義法是判斷充分條件、必要條件的基本的方法,解題時(shí)注意選擇恰當(dāng)?shù)姆椒ㄅ袛嗝}是否正確.6、C【解題分析】
設(shè),,,由可得,利用定義將用表示即可.【題目詳解】設(shè),,,由及,得,故,所以.故選:C.【題目點(diǎn)撥】本題考查利用拋物線定義求焦半徑的問(wèn)題,考查學(xué)生等價(jià)轉(zhuǎn)化的能力,是一道容易題.7、B【解題分析】
根據(jù)題意,求得函數(shù)周期,利用周期性和函數(shù)值,即可求得.【題目詳解】由已知可知,,所以函數(shù)是一個(gè)以4為周期的周期函數(shù),所以,解得,故選:B.【題目點(diǎn)撥】本題考查函數(shù)周期的求解,涉及對(duì)數(shù)運(yùn)算,屬綜合基礎(chǔ)題.8、B【解題分析】,∴,選B.9、A【解題分析】
先確定集合中的元素,然后由交集定義求解.【題目詳解】,.故選:A.【題目點(diǎn)撥】本題考查求集合的交集運(yùn)算,掌握交集定義是解題關(guān)鍵.10、C【解題分析】
根據(jù)等比數(shù)列的性質(zhì)以及充分條件和必要條件的定義進(jìn)行判斷即可.【題目詳解】解:若{an}是等比數(shù)列,則,
若,則,即成立,
若成立,則,即,
故“”是“”的充要條件,
故選:C.【題目點(diǎn)撥】本題主要考查充分條件和必要條件的判斷,利用等比數(shù)列的通項(xiàng)公式是解決本題的關(guān)鍵.11、C【解題分析】分析:根據(jù)最低點(diǎn),判斷A=3,根據(jù)對(duì)稱中心與最低點(diǎn)的橫坐標(biāo)求得周期T,再代入最低點(diǎn)可求得解析式為,依次判斷各選項(xiàng)的正確與否.詳解:因?yàn)闉閷?duì)稱中心,且最低點(diǎn)為,所以A=3,且由所以,將帶入得,所以由此可得①錯(cuò)誤,②正確,③當(dāng)時(shí),,所以與有6個(gè)交點(diǎn),設(shè)各個(gè)交點(diǎn)坐標(biāo)依次為,則,所以③正確所以選C點(diǎn)睛:本題考查了根據(jù)條件求三角函數(shù)的解析式,通過(guò)求得的解析式進(jìn)一步研究函數(shù)的性質(zhì),屬于中檔題.12、D【解題分析】
由可得,O在AB的中垂線上,結(jié)合圓的性質(zhì)可知O在兩個(gè)圓心的連線上,從而可求.【題目詳解】因?yàn)椋設(shè)在AB的中垂線上,即O在兩個(gè)圓心的連線上,,,三點(diǎn)共線,所以,得,故選D.【題目點(diǎn)撥】本題主要考查圓的性質(zhì)應(yīng)用,幾何性質(zhì)的轉(zhuǎn)化是求解的捷徑.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】
由于直線過(guò)拋物線的焦點(diǎn),因此過(guò),分別作的準(zhǔn)線的垂線,垂足分別為,,由拋物線的定義及平行線性質(zhì)可得,從而再由拋物線定義可求得直線傾斜角的余弦,再求得正切即為直線斜率.注意對(duì)稱性,問(wèn)題應(yīng)該有兩解.【題目詳解】直線過(guò)拋物線的焦點(diǎn),,過(guò),分別作的準(zhǔn)線的垂線,垂足分別為,,由拋物線的定義知,.因?yàn)椋裕驗(yàn)?,所以,從而.設(shè)直線的傾斜角為,不妨設(shè),如圖,則,,同理,則,解得,,由對(duì)稱性還有滿足題意.,綜上,.【題目點(diǎn)撥】本題考查拋物線的性質(zhì),考查拋物線的焦點(diǎn)弦問(wèn)題,掌握拋物線的定義,把拋物線上點(diǎn)到焦點(diǎn)距離與它到距離聯(lián)系起來(lái)是解題關(guān)鍵.14、【解題分析】
由向量平行坐標(biāo)表示計(jì)算.注意驗(yàn)證兩向量方向是否相同.【題目詳解】∵,∴,解得或,時(shí),滿足題意,時(shí),,方向相反,不合題意,舍去.∴.故答案為:1.【題目點(diǎn)撥】本題考查向量平行的坐標(biāo)運(yùn)算,解題時(shí)要注意驗(yàn)證方向相同這個(gè)條件,否則會(huì)出錯(cuò).15、-2【解題分析】
先根據(jù)約束條件畫出可行域,再利用幾何意義求最值,表示直線在軸上的截距,只需求出可行域直線在軸上的截距最大最小值時(shí)所在的頂點(diǎn)即可.【題目詳解】由題意得:目標(biāo)函數(shù)在點(diǎn)B取得最大值為7,在點(diǎn)A處取得最小值為1,∴,,∴直線AB的方程是:,∴則,故答案為.【題目點(diǎn)撥】本題主要考查了簡(jiǎn)單的線性規(guī)劃,以及利用幾何意義求最值的方法,屬于基礎(chǔ)題.16、【解題分析】
由已知利用正弦定理,二倍角的正弦函數(shù)公式即可計(jì)算求值得解.【題目詳解】解:∵a=3,,B=2A,∴由正弦定理可得:,∴cosA.故答案為.【題目點(diǎn)撥】本題主要考查了正弦定理,二倍角的正弦函數(shù)公式在解三角形中的應(yīng)用,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)證明見(jiàn)解析;(2)60°.【解題分析】試題分析:(1)連結(jié)PD,由題意可得,則AB⊥平面PDE,;(2)法一:結(jié)合幾何關(guān)系做出二面角的平面角,計(jì)算可得其正切值為,故二面角的大小為;法二:以D為原點(diǎn)建立空間直角坐標(biāo)系,計(jì)算可得平面PBE的法向量.平面PAB的法向量為.據(jù)此計(jì)算可得二面角的大小為.試題解析:(1)連結(jié)PD,PA=PB,PDAB.,BCAB,DEAB.又,AB平面PDE,PE平面PDE,∴ABPE.(2)法一:平面PAB平面ABC,平面PAB平面ABC=AB,PDAB,PD平面ABC.則DEPD,又EDAB,PD平面AB=D,DE平面PAB,過(guò)D做DF垂直PB與F,連接EF,則EFPB,∠DFE為所求二面角的平面角,則:DE=,DF=,則,故二面角的大小為法二:平面PAB平面ABC,平面PAB平面ABC=AB,PDAB,PD平面ABC.如圖,以D為原點(diǎn)建立空間直角坐標(biāo)系,B(1,0,0),P(0,0,),E(0,,0),=(1,0,),=(0,,).設(shè)平面PBE的法向量,令,得.DE平面PAB,平面PAB的法向量為.設(shè)二面角的大小為,由圖知,,所以即二面角的大小為.18、(1):,:;(2)【解題分析】
(1)根據(jù)點(diǎn)斜式寫出直線的直角坐標(biāo)方程,并轉(zhuǎn)化為極坐標(biāo)方程,利用,將曲線的參數(shù)方程轉(zhuǎn)化為普通方程.(2)將直線的參數(shù)方程代入曲線的普通方程,結(jié)合直線參數(shù)的幾何意義以及根與系數(shù)關(guān)系,求得的值.【題目詳解】(1)的直角坐標(biāo)方程為,即,則的極坐標(biāo)方程為.曲線的普通方程為.(2)直線的參數(shù)方程為(為參數(shù),為的傾斜角),代入曲線的普通方程,得.設(shè),對(duì)應(yīng)的參數(shù)分別為,,所以,在的兩側(cè).則.【題目點(diǎn)撥】本小題主要考查直角坐標(biāo)化為極坐標(biāo),考查參數(shù)方程化為普通方程,考查直線參數(shù)方程,考查直線參數(shù)的幾何意義,屬于中檔題.19、(1)見(jiàn)解析;(2)【解題分析】
(1)由折疊過(guò)程知與平面垂直,得,再取中點(diǎn),可證與平面垂直,得,從而可得線面垂直,再得線線垂直;(2)由已知得為中點(diǎn),以為原點(diǎn),所在直線為軸,在平面內(nèi)過(guò)作的垂線為軸建立空間直角坐標(biāo)系,由已知求出線段長(zhǎng),得出各點(diǎn)坐標(biāo),用平面的法向量計(jì)算二面角的余弦.【題目詳解】(1)易知與平面垂直,∴,連接,取中點(diǎn),連接,由得,,∴平面,平面,∴,又,∴平面,∴;(2)由,知是中點(diǎn),令,則,由,,∴,解得,故.以為原點(diǎn),所在直線為軸,在平面內(nèi)過(guò)作的垂線為軸建立空間直角坐標(biāo)系,如圖,則,,,設(shè)平面的法向量為,則,取,則.又易知平面的一個(gè)法向量為,.∴二面角的余弦值為.【題目點(diǎn)撥】本題考查證明線線垂直,考查用空間向量法求二面角.證線線垂直,一般先證線面垂直,而證線面垂直又要證線線垂直,注意線線垂直、線面垂直及面面垂直的轉(zhuǎn)化.求空間角,常用方法就是建立空間直角坐標(biāo)系,用空間向量法求空間角.20、(1);(2)或【解題分析】
(1)利用平面向量數(shù)量積的坐標(biāo)運(yùn)算可得,利用正弦函數(shù)的周期性即可求
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 甲下外生骨疣的臨床護(hù)理
- 株紫丁香課件趙秀梅
- 孕期手腳心發(fā)紅的健康宣教
- 《改革進(jìn)入新時(shí)期》課件
- 股份增值合同三篇
- 鐵路機(jī)車車輛修造合同三篇
- 健身運(yùn)動(dòng)APP相關(guān)行業(yè)投資規(guī)劃報(bào)告范本
- ALN-BN復(fù)合陶瓷相關(guān)行業(yè)投資規(guī)劃報(bào)告
- 保障性住房管理服務(wù)相關(guān)行業(yè)投資規(guī)劃報(bào)告
- 班級(jí)環(huán)境布置與創(chuàng)意設(shè)計(jì)計(jì)劃
- 高職勞動(dòng)教育學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 2023年注冊(cè)城鄉(xiāng)規(guī)劃師考試:城鄉(xiāng)規(guī)劃相關(guān)知識(shí)歷年真題匯編(共388題)
- 九型人格之職場(chǎng)心理學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 醫(yī)療器械監(jiān)督管理?xiàng)l例知識(shí)競(jìng)賽考試題及答案
- 工地柴油供油三方合同范本
- (工作計(jì)劃)非物質(zhì)文化遺產(chǎn)保護(hù)方案
- 大學(xué)生國(guó)家安全教育學(xué)習(xí)通超星期末考試答案章節(jié)答案2024年
- 人力資源崗位招聘筆試題及解答(某大型央企)
- 藝術(shù)概論智慧樹(shù)知到答案2024年海南師范大學(xué)
- 公園廣場(chǎng)保潔管理服務(wù)投標(biāo)方案(技術(shù)方案)
- 2024屆上海高考語(yǔ)文課內(nèi)古詩(shī)文背誦默寫篇目(精校版)
評(píng)論
0/150
提交評(píng)論