![2024屆內(nèi)蒙古呼和浩特市第六中學高三下學期5月月考數(shù)學試題文試題_第1頁](http://file4.renrendoc.com/view11/M03/29/2B/wKhkGWWS6fSAPkoGAAHylPzG43U214.jpg)
![2024屆內(nèi)蒙古呼和浩特市第六中學高三下學期5月月考數(shù)學試題文試題_第2頁](http://file4.renrendoc.com/view11/M03/29/2B/wKhkGWWS6fSAPkoGAAHylPzG43U2142.jpg)
![2024屆內(nèi)蒙古呼和浩特市第六中學高三下學期5月月考數(shù)學試題文試題_第3頁](http://file4.renrendoc.com/view11/M03/29/2B/wKhkGWWS6fSAPkoGAAHylPzG43U2143.jpg)
![2024屆內(nèi)蒙古呼和浩特市第六中學高三下學期5月月考數(shù)學試題文試題_第4頁](http://file4.renrendoc.com/view11/M03/29/2B/wKhkGWWS6fSAPkoGAAHylPzG43U2144.jpg)
![2024屆內(nèi)蒙古呼和浩特市第六中學高三下學期5月月考數(shù)學試題文試題_第5頁](http://file4.renrendoc.com/view11/M03/29/2B/wKhkGWWS6fSAPkoGAAHylPzG43U2145.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
2024屆內(nèi)蒙古呼和浩特市第六中學高三下學期5月月考數(shù)學試題文試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,如果輸入,則輸出屬于()A. B. C. D.2.已知命題:R,;命題:R,,則下列命題中為真命題的是()A. B. C. D.3.已知點,點在曲線上運動,點為拋物線的焦點,則的最小值為()A. B. C. D.44.小明有3本作業(yè)本,小波有4本作業(yè)本,將這7本作業(yè)本混放在-起,小明從中任取兩本.則他取到的均是自己的作業(yè)本的概率為()A. B. C. D.5.設函數(shù)的導函數(shù),且滿足,若在中,,則()A. B. C. D.6.已知不同直線、與不同平面、,且,,則下列說法中正確的是()A.若,則 B.若,則C.若,則 D.若,則7.已知三棱錐的外接球半徑為2,且球心為線段的中點,則三棱錐的體積的最大值為()A. B. C. D.8.若干年前,某教師剛退休的月退休金為6000元,月退休金各種用途占比統(tǒng)計圖如下面的條形圖.該教師退休后加強了體育鍛煉,目前月退休金的各種用途占比統(tǒng)計圖如下面的折線圖.已知目前的月就醫(yī)費比剛退休時少100元,則目前該教師的月退休金為().A.6500元 B.7000元 C.7500元 D.8000元9.將一張邊長為的紙片按如圖(1)所示陰影部分裁去四個全等的等腰三角形,將余下部分沿虛線折疊并拼成一個有底的正四棱錐模型,如圖(2)放置,如果正四棱錐的主視圖是正三角形,如圖(3)所示,則正四棱錐的體積是()A. B. C. D.10.復數(shù)的共軛復數(shù)為()A. B. C. D.11.如圖,在平面四邊形中,滿足,且,沿著把折起,使點到達點的位置,且使,則三棱錐體積的最大值為()A.12 B. C. D.12.已知函數(shù)是定義在上的奇函數(shù),函數(shù)滿足,且時,,則()A.2 B. C.1 D.二、填空題:本題共4小題,每小題5分,共20分。13.從4名男生和3名女生中選出4名去參加一項活動,要求男生中的甲和乙不能同時參加,女生中的丙和丁至少有一名參加,則不同的選法種數(shù)為______.(用數(shù)字作答)14.在疫情防控過程中,某醫(yī)院一次性收治患者127人.在醫(yī)護人員的精心治療下,第15天開始有患者治愈出院,并且恰有其中的1名患者治愈出院.如果從第16天開始,每天出院的人數(shù)是前一天出院人數(shù)的2倍,那么第19天治愈出院患者的人數(shù)為_______________,第_______________天該醫(yī)院本次收治的所有患者能全部治愈出院.15.棱長為的正四面體與正三棱錐的底面重合,若由它們構成的多面體的頂點均在一球的球面上,則正三棱錐的內(nèi)切球半徑為______.16.某校共有師生1600人,其中教師有1000人,現(xiàn)用分層抽樣的方法,從所有師生中抽取一個容量為80的樣本,則抽取學生的人數(shù)為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)某中學的甲、乙、丙三名同學參加高校自主招生考試,每位同學彼此獨立的從五所高校中任選2所.(1)求甲、乙、丙三名同學都選高校的概率;(2)若已知甲同學特別喜歡高校,他必選校,另在四校中再隨機選1所;而同學乙和丙對五所高校沒有偏愛,因此他們每人在五所高校中隨機選2所.(i)求甲同學選高校且乙、丙都未選高校的概率;(ii)記為甲、乙、丙三名同學中選高校的人數(shù),求隨機變量的分布列及數(shù)學期望.18.(12分)已知函數(shù)(I)當時,解不等式.(II)若不等式恒成立,求實數(shù)的取值范圍19.(12分)在直角坐標系中,直線l過點,且傾斜角為,以直角坐標系的原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程為.求直線l的參數(shù)方程和曲線C的直角坐標方程,并判斷曲線C是什么曲線;設直線l與曲線C相交與M,N兩點,當,求的值.20.(12分)2019年12月以來,湖北省武漢市持續(xù)開展流感及相關疾病監(jiān)測,發(fā)現(xiàn)多起病毒性肺炎病例,均診斷為病毒性肺炎/肺部感染,后被命名為新型冠狀病毒肺炎(CoronaVirusDisease2019,COVID—19),簡稱“新冠肺炎”.下圖是2020年1月15日至1月24日累計確診人數(shù)隨時間變化的散點圖.為了預測在未釆取強力措施下,后期的累計確診人數(shù),建立了累計確診人數(shù)y與時間變量t的兩個回歸模型,根據(jù)1月15日至1月24日的數(shù)據(jù)(時間變量t的值依次1,2,…,10)建立模型和.(1)根據(jù)散點圖判斷,與哪一個適宜作為累計確診人數(shù)y與時間變量t的回歸方程類型?(給出判斷即可,不必說明理由)(2根據(jù)(1)的判斷結果及附表中數(shù)據(jù),建立y關于x的回歸方程;(3)以下是1月25日至1月29日累計確診人數(shù)的真實數(shù)據(jù),根據(jù)(2)的結果回答下列問題:時間1月25日1月26日1月27日1月28日1月29日累計確診人數(shù)的真實數(shù)據(jù)19752744451559747111(ⅰ)當1月25日至1月27日這3天的誤差(模型預測數(shù)據(jù)與真實數(shù)據(jù)差值的絕對值與真實數(shù)據(jù)的比值)都小于0.1則認為模型可靠,請判斷(2)的回歸方程是否可靠?(ⅱ)2020年1月24日在人民政府的強力領導下,全國人民共同采取了強力的預防“新冠肺炎”的措施,若采取措施5天后,真實數(shù)據(jù)明顯低于預測數(shù)據(jù),則認為防護措施有效,請判斷預防措施是否有效?附:對于一組數(shù)據(jù)(,,……,,其回歸直線的斜率和截距的最小二乘估計分別為,.參考數(shù)據(jù):其中,.5.53901938576403152515470010015022533850721.(12分)已知數(shù)列的前項和為,.(1)求數(shù)列的通項公式;(2)若,為數(shù)列的前項和.求證:.22.(10分)已知,,不等式恒成立.(1)求證:(2)求證:.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】
由題意,框圖的作用是求分段函數(shù)的值域,求解即得解.【題目詳解】由題意可知,框圖的作用是求分段函數(shù)的值域,當;當綜上:.故選:B【題目點撥】本題考查了條件分支的程序框圖,考查了學生邏輯推理,分類討論,數(shù)學運算的能力,屬于基礎題.2、B【解題分析】
根據(jù),可知命題的真假,然后對取值,可得命題的真假,最后根據(jù)真值表,可得結果.【題目詳解】對命題:可知,所以R,故命題為假命題命題:取,可知所以R,故命題為真命題所以為真命題故選:B【題目點撥】本題主要考查對命題真假的判斷以及真值表的應用,識記真值表,屬基礎題.3、D【解題分析】
如圖所示:過點作垂直準線于,交軸于,則,設,,則,利用均值不等式得到答案.【題目詳解】如圖所示:過點作垂直準線于,交軸于,則,設,,則,當,即時等號成立.故選:.【題目點撥】本題考查了拋物線中距離的最值問題,意在考查學生的計算能力和轉(zhuǎn)化能力.4、A【解題分析】
利用計算即可,其中表示事件A所包含的基本事件個數(shù),為基本事件總數(shù).【題目詳解】從7本作業(yè)本中任取兩本共有種不同的結果,其中,小明取到的均是自己的作業(yè)本有種不同結果,由古典概型的概率計算公式,小明取到的均是自己的作業(yè)本的概率為.故選:A.【題目點撥】本題考查古典概型的概率計算問題,考查學生的基本運算能力,是一道基礎題.5、D【解題分析】
根據(jù)的結構形式,設,求導,則,在上是增函數(shù),再根據(jù)在中,,得到,,利用余弦函數(shù)的單調(diào)性,得到,再利用的單調(diào)性求解.【題目詳解】設,所以,因為當時,,即,所以,在上是增函數(shù),在中,因為,所以,,因為,且,所以,即,所以,即故選:D【題目點撥】本題主要考查導數(shù)與函數(shù)的單調(diào)性,還考查了運算求解的能力,屬于中檔題.6、C【解題分析】
根據(jù)空間中平行關系、垂直關系的相關判定和性質(zhì)可依次判斷各個選項得到結果.【題目詳解】對于,若,則可能為平行或異面直線,錯誤;對于,若,則可能為平行、相交或異面直線,錯誤;對于,若,且,由面面垂直的判定定理可知,正確;對于,若,只有當垂直于的交線時才有,錯誤.故選:.【題目點撥】本題考查空間中線面關系、面面關系相關命題的辨析,關鍵是熟練掌握空間中的平行關系與垂直關系的相關命題.7、C【解題分析】
由題可推斷出和都是直角三角形,設球心為,要使三棱錐的體積最大,則需滿足,結合幾何關系和圖形即可求解【題目詳解】先畫出圖形,由球心到各點距離相等可得,,故是直角三角形,設,則有,又,所以,當且僅當時,取最大值4,要使三棱錐體積最大,則需使高,此時,故選:C【題目點撥】本題考查由三棱錐外接球半徑,半徑與球心位置求解錐體體積最值問題,屬于基礎題8、D【解題分析】
設目前該教師的退休金為x元,利用條形圖和折線圖列出方程,求出結果即可.【題目詳解】設目前該教師的退休金為x元,則由題意得:6000×15%﹣x×10%=1.解得x=2.故選D.【題目點撥】本題考查由條形圖和折線圖等基礎知識解決實際問題,屬于基礎題.9、B【解題分析】設折成的四棱錐的底面邊長為,高為,則,故由題設可得,所以四棱錐的體積,應選答案B.10、D【解題分析】
直接相乘,得,由共軛復數(shù)的性質(zhì)即可得結果【題目詳解】∵∴其共軛復數(shù)為.故選:D【題目點撥】熟悉復數(shù)的四則運算以及共軛復數(shù)的性質(zhì).11、C【解題分析】
過作于,連接,易知,,從而可證平面,進而可知,當最大時,取得最大值,取的中點,可得,再由,求出的最大值即可.【題目詳解】在和中,,所以,則,過作于,連接,顯然,則,且,又因為,所以平面,所以,當最大時,取得最大值,取的中點,則,所以,因為,所以點在以為焦點的橢圓上(不在左右頂點),其中長軸長為10,焦距長為8,所以的最大值為橢圓的短軸長的一半,故最大值為,所以最大值為,故的最大值為.故選:C.【題目點撥】本題考查三棱錐體積的最大值,考查學生的空間想象能力與計算求解能力,屬于中檔題.12、D【解題分析】
說明函數(shù)是周期函數(shù),由周期性把自變量的值變小,再結合奇偶性計算函數(shù)值.【題目詳解】由知函數(shù)的周期為4,又是奇函數(shù),,又,∴,∴.故選:D.【題目點撥】本題考查函數(shù)的奇偶性與周期性,掌握周期性與奇偶性的概念是解題基礎.二、填空題:本題共4小題,每小題5分,共20分。13、1【解題分析】
由排列組合及分類討論思想分別討論:①設甲參加,乙不參加,②設乙參加,甲不參加,③設甲,乙都不參加,可得不同的選法種數(shù)為9+9+5=1,得解.【題目詳解】①設甲參加,乙不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數(shù)為9,②設乙參加,甲不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數(shù)為9,③設甲,乙都不參加,由女生中的丙和丁至少有一名參加,可得不同的選法種數(shù)為5,綜合①②③得:不同的選法種數(shù)為9+9+5=1,故答案為:1.【題目點撥】本題考查了排列組合及分類討論思想,準確分類及計算是關鍵,屬中檔題.14、161【解題分析】
由題意可知出院人數(shù)構成一個首項為1,公比為2的等比數(shù)列,由此可求結果.【題目詳解】某醫(yī)院一次性收治患者127人.第15天開始有患者治愈出院,并且恰有其中的1名患者治愈出院.且從第16天開始,每天出院的人數(shù)是前一天出院人數(shù)的2倍,從第15天開始,每天出院人數(shù)構成以1為首項,2為公比的等比數(shù)列,則第19天治愈出院患者的人數(shù)為,,解得,第天該醫(yī)院本次收治的所有患者能全部治愈出院.故答案為:16,1.【題目點撥】本題主要考查了等比數(shù)列在實際問題中的應用,考查等比數(shù)列的性質(zhì)等基礎知識,考查推理能力與計算能力,屬于中檔題.15、【解題分析】
由棱長為的正四面體求出外接球的半徑,進而求出正三棱錐的高及側棱長,可得正三棱錐的三條側棱兩兩相互垂直,進而求出體積與表面積,設內(nèi)切圓的半徑,由等體積,求出內(nèi)切圓的半徑.【題目詳解】由題意可知:多面體的外接球即正四面體的外接球作面交于,連接,如圖則,且為外接球的直徑,可得,設三角形的外接圓的半徑為,則,解得,設外接球的半徑為,則可得,即,解得,設正三棱錐的高為,因為,所以,所以,而,所以正三棱錐的三條側棱兩兩相互垂直,所以,設內(nèi)切球的半徑為,,即解得:.故答案為:.【題目點撥】本題考查多面體與球的內(nèi)切和外接問題,考查轉(zhuǎn)化與化歸思想,考查空間想象能力、運算求解能力,求解時注意借助幾何體的直觀圖進行分析.16、1【解題分析】
直接根據(jù)分層抽樣的比例關系得到答案.【題目詳解】分層抽樣的抽取比例為,∴抽取學生的人數(shù)為6001.故答案為:1.【題目點撥】本題考查了分層抽樣的計算,屬于簡單題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)(i)(ii)分布列見解析,【解題分析】
(1)先計算甲、乙、丙同學分別選擇D高校的概率,利用事件的獨立性即得解;(2)(i)分別計算每個事件的概率,再利用事件的獨立性即得解;(ii),利用事件的獨立性,分別計算對應的概率,列出分布列,計算數(shù)學期望即得解.【題目詳解】(1)甲從五所高校中任選2所,共有共10種情況,甲、乙、丙同學都選高校,共有四種情況,甲同學選高校的概率為,因此乙、丙兩同學選高校的概率為,因為每位同學彼此獨立,所以甲、乙、丙三名同學都選高校的概率為.(2)(i)甲同學必選校且選高校的概率為,乙未選高校的概率為,丙未選高校的概率為,因為每位同學彼此獨立,所以甲同學選高校且乙、丙都未選高校的概率為.(ii),因此,.即的分布列為0123因此數(shù)學期望為.【題目點撥】本題考查了事件獨立性的應用和隨機變量的分布列和期望,考查了學生綜合分析,概念理解,實際應用,數(shù)學運算的能力,屬于中檔題.18、(Ⅰ);(Ⅱ).【解題分析】試題分析:(1)根據(jù)零點分區(qū)間法,去掉絕對值解不等式;(2)根據(jù)絕對值不等式的性質(zhì)得,因此將問題轉(zhuǎn)化為恒成立,借此不等式即可.試題解析:(Ⅰ)由得,,或,或解得:所以原不等式的解集為.(Ⅱ)由不等式的性質(zhì)得:,要使不等式恒成立,則當時,不等式恒成立;當時,解不等式得.綜上.所以實數(shù)的取值范圍為.19、(Ⅰ)曲線是焦點在軸上的橢圓;(Ⅱ).【解題分析】試題分析:(1)由題易知,直線的參數(shù)方程為,(為參數(shù)),;曲線的直角坐標方程為,橢圓;(2)將直線代入橢圓得到,所以,解得.試題解析:(Ⅰ)直線的參數(shù)方程為.曲線的直角坐標方程為,即,所以曲線是焦點在軸上的橢圓.(Ⅱ)將的參數(shù)方程代入曲線的直角坐標方程為得,,得,,20、(1)適宜(2)(3)(?。┗貧w
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 科技展廳燈光布局與視覺效果的配置指南
- 生活中的挫折教育家長如何引導孩子自立自強
- 設計驅(qū)動醫(yī)療技術的未來發(fā)展趨勢
- 校園內(nèi)公共區(qū)域的消防安全管理策略研究
- 2025年海南職業(yè)技術學院高職單招高職單招英語2016-2024歷年頻考點試題含答案解析
- 2025年細胞轉(zhuǎn)瓶項目可行性研究報告
- 2025年智能報警控制儀項目可行性研究報告
- 科技賦能下的崇明島產(chǎn)業(yè)發(fā)展
- 2025年可調(diào)單夾項目可行性研究報告
- 企業(yè)社會責任評價-深度研究
- 城市基礎設施修繕工程的重點與應對措施
- GB 12710-2024焦化安全規(guī)范
- 【??途W(wǎng)】2024秋季校園招聘白皮書
- 2024-2025銀行對公業(yè)務場景金融創(chuàng)新報告
- 2025屆鄭州市高三一診考試英語試卷含解析
- 《我國個人所得稅制下稅收征管問題研究》
- 腫瘤中醫(yī)治療及調(diào)養(yǎng)
- 組長競選課件教學課件
- 2022年公務員多省聯(lián)考《申論》真題(遼寧A卷)及答案解析
- 北師大版四年級下冊數(shù)學第一單元測試卷帶答案
- 術后肺炎預防和控制專家共識解讀課件
評論
0/150
提交評論