2024屆云南省陸良縣高三數(shù)學(xué)試題大練習(xí)(一)_第1頁
2024屆云南省陸良縣高三數(shù)學(xué)試題大練習(xí)(一)_第2頁
2024屆云南省陸良縣高三數(shù)學(xué)試題大練習(xí)(一)_第3頁
2024屆云南省陸良縣高三數(shù)學(xué)試題大練習(xí)(一)_第4頁
2024屆云南省陸良縣高三數(shù)學(xué)試題大練習(xí)(一)_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆云南省陸良縣高三數(shù)學(xué)試題大練習(xí)(一)注意事項1.考生要認(rèn)真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結(jié)束后,考生須將試卷和答題卡放在桌面上,待監(jiān)考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.執(zhí)行如圖所示的程序框圖,若輸出的,則①處應(yīng)填寫()A. B. C. D.2.已知數(shù)列滿足,且成等比數(shù)列.若的前n項和為,則的最小值為()A. B. C. D.3.等比數(shù)列的各項均為正數(shù),且,則()A.12 B.10 C.8 D.4.已知函數(shù),若所有點,所構(gòu)成的平面區(qū)域面積為,則()A. B. C.1 D.5.如圖1,《九章算術(shù)》中記載了一個“折竹抵地”問題:今有竹高一丈,末折抵地,去本三尺,問折者高幾何?意思是:有一根竹子,原高一丈(1丈=10尺),現(xiàn)被風(fēng)折斷,尖端落在地上,竹尖與竹根的距離三尺,問折斷處離地面的高為()尺.A. B. C. D.6.已知偶函數(shù)在區(qū)間內(nèi)單調(diào)遞減,,,,則,,滿足()A. B. C. D.7.設(shè)實數(shù)x,y滿足條件x+y-2?02x-y+3?0x-y?0則A.1 B.2 C.3 D.48.根據(jù)最小二乘法由一組樣本點(其中),求得的回歸方程是,則下列說法正確的是()A.至少有一個樣本點落在回歸直線上B.若所有樣本點都在回歸直線上,則變量同的相關(guān)系數(shù)為1C.對所有的解釋變量(),的值一定與有誤差D.若回歸直線的斜率,則變量x與y正相關(guān)9.設(shè),則“”是“”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件10.若復(fù)數(shù)滿足,則()A. B. C.2 D.11.設(shè)遞增的等比數(shù)列的前n項和為,已知,,則()A.9 B.27 C.81 D.12.已知三棱錐中,為的中點,平面,,,則有下列四個結(jié)論:①若為的外心,則;②若為等邊三角形,則;③當(dāng)時,與平面所成的角的范圍為;④當(dāng)時,為平面內(nèi)一動點,若OM∥平面,則在內(nèi)軌跡的長度為1.其中正確的個數(shù)是().A.1 B.1 C.3 D.4二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中的系數(shù)為____.14.已知為橢圓內(nèi)一定點,經(jīng)過引一條弦,使此弦被點平分,則此弦所在的直線方程為________________.15.若函數(shù)(a>0且a≠1)在定義域[m,n]上的值域是[m2,n2](1<m<n),則a的取值范圍是_______.16.設(shè)實數(shù),滿足,則的最大值是______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)證明:當(dāng)時,;(2)若函數(shù)有三個零點,求實數(shù)的取值范圍.18.(12分)已知橢圓與x軸負(fù)半軸交于,離心率.(1)求橢圓C的方程;(2)設(shè)直線與橢圓C交于兩點,連接AM,AN并延長交直線x=4于兩點,若,直線MN是否恒過定點,如果是,請求出定點坐標(biāo),如果不是,請說明理由.19.(12分)過點P(-4,0)的動直線l與拋物線相交于D、E兩點,已知當(dāng)l的斜率為時,.(1)求拋物線C的方程;(2)設(shè)的中垂線在軸上的截距為,求的取值范圍.20.(12分)已知,且的解集為.(1)求實數(shù),的值;(2)若的圖像與直線及圍成的四邊形的面積不小于14,求實數(shù)取值范圍.21.(12分)的內(nèi)角的對邊分別為,且.(1)求;(2)若,點為邊的中點,且,求的面積.22.(10分)已知A是拋物線E:y2=2px(p>0)上的一點,以點A和點B(2,0)為直徑兩端點的圓C交直線x=1于M,N兩點.(1)若|MN|=2,求拋物線E的方程;(2)若0<p<1,拋物線E與圓(x﹣5)2+y2=9在x軸上方的交點為P,Q,點G為PQ的中點,O為坐標(biāo)原點,求直線OG斜率的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】

模擬程序框圖運行分析即得解.【題目詳解】;;.所以①處應(yīng)填寫“”故選:B【題目點撥】本題主要考查程序框圖,意在考查學(xué)生對這些知識的理解掌握水平.2、D【解題分析】

利用等比中項性質(zhì)可得等差數(shù)列的首項,進(jìn)而求得,再利用二次函數(shù)的性質(zhì),可得當(dāng)或時,取到最小值.【題目詳解】根據(jù)題意,可知為等差數(shù)列,公差,由成等比數(shù)列,可得,∴,解得.∴.根據(jù)單調(diào)性,可知當(dāng)或時,取到最小值,最小值為.故選:D.【題目點撥】本題考查等差數(shù)列通項公式、等比中項性質(zhì)、等差數(shù)列前項和的最值,考查函數(shù)與方程思想、轉(zhuǎn)化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意當(dāng)或時同時取到最值.3、B【解題分析】

由等比數(shù)列的性質(zhì)求得,再由對數(shù)運算法則可得結(jié)論.【題目詳解】∵數(shù)列是等比數(shù)列,∴,,∴.故選:B.【題目點撥】本題考查等比數(shù)列的性質(zhì),考查對數(shù)的運算法則,掌握等比數(shù)列的性質(zhì)是解題關(guān)鍵.4、D【解題分析】

依題意,可得,在上單調(diào)遞增,于是可得在上的值域為,繼而可得,解之即可.【題目詳解】解:,因為,,所以,在上單調(diào)遞增,則在上的值域為,因為所有點所構(gòu)成的平面區(qū)域面積為,所以,解得,故選:D.【題目點撥】本題考查利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,理解題意,得到是關(guān)鍵,考查運算能力,屬于中檔題.5、B【解題分析】如圖,已知,,

∴,解得

,∴,解得

.∴折斷后的竹干高為4.55尺故選B.6、D【解題分析】

首先由函數(shù)為偶函數(shù),可得函數(shù)在內(nèi)單調(diào)遞增,再由,即可判定大小【題目詳解】因為偶函數(shù)在減,所以在上增,,,,∴.故選:D【題目點撥】本題考查函數(shù)的奇偶性和單調(diào)性,不同類型的數(shù)比較大小,應(yīng)找一個中間數(shù),通過它實現(xiàn)大小關(guān)系的傳遞,屬于中檔題.7、C【解題分析】

畫出可行域和目標(biāo)函數(shù),根據(jù)目標(biāo)函數(shù)的幾何意義平移得到答案.【題目詳解】如圖所示:畫出可行域和目標(biāo)函數(shù),z=x+y+1,即y=-x+z-1,z表示直線在y軸的截距加上1,根據(jù)圖像知,當(dāng)x+y=2時,且x∈-13,1時,故選:C.【題目點撥】本題考查了線性規(guī)劃問題,畫出圖像是解題的關(guān)鍵.8、D【解題分析】

對每一個選項逐一分析判斷得解.【題目詳解】回歸直線必過樣本數(shù)據(jù)中心點,但樣本點可能全部不在回歸直線上﹐故A錯誤;所有樣本點都在回歸直線上,則變量間的相關(guān)系數(shù)為,故B錯誤;若所有的樣本點都在回歸直線上,則的值與相等,故C錯誤;相關(guān)系數(shù)r與符號相同,若回歸直線的斜率,則,樣本點分布應(yīng)從左到右是上升的,則變量x與y正相關(guān),故D正確.故選D.【題目點撥】本題主要考查線性回歸方程的性質(zhì),意在考查學(xué)生對該知識的理解掌握水平和分析推理能力.9、C【解題分析】

根據(jù)充分條件和必要條件的定義結(jié)合對數(shù)的運算進(jìn)行判斷即可.【題目詳解】∵a,b∈(1,+∞),∴a>b?logab<1,logab<1?a>b,∴a>b是logab<1的充分必要條件,故選C.【題目點撥】本題主要考查充分條件和必要條件的判斷,根據(jù)不等式的解法是解決本題的關(guān)鍵.10、D【解題分析】

把已知等式變形,利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,再由復(fù)數(shù)模的計算公式計算.【題目詳解】解:由題意知,,,∴,故選:D.【題目點撥】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)模的求法.11、A【解題分析】

根據(jù)兩個已知條件求出數(shù)列的公比和首項,即得的值.【題目詳解】設(shè)等比數(shù)列的公比為q.由,得,解得或.因為.且數(shù)列遞增,所以.又,解得,故.故選:A【題目點撥】本題主要考查等比數(shù)列的通項和求和公式,意在考查學(xué)生對這些知識的理解掌握水平.12、C【解題分析】

由線面垂直的性質(zhì),結(jié)合勾股定理可判斷①正確;反證法由線面垂直的判斷和性質(zhì)可判斷②錯誤;由線面角的定義和轉(zhuǎn)化為三棱錐的體積,求得C到平面PAB的距離的范圍,可判斷③正確;由面面平行的性質(zhì)定理可得線面平行,可得④正確.【題目詳解】畫出圖形:若為的外心,則,平面,可得,即,①正確;若為等邊三角形,,又可得平面,即,由可得,矛盾,②錯誤;若,設(shè)與平面所成角為可得,設(shè)到平面的距離為由可得即有,當(dāng)且僅當(dāng)取等號.可得的最大值為,即的范圍為,③正確;取中點,的中點,連接由中位線定理可得平面平面可得在線段上,而,可得④正確;所以正確的是:①③④故選:C【題目點撥】此題考查立體幾何中與點、線、面位置關(guān)系有關(guān)的命題的真假判斷,處理這類問題,可以用已知的定理或性質(zhì)來證明,也可以用反證法來說明命題的不成立.屬于一般性題目.二、填空題:本題共4小題,每小題5分,共20分。13、28【解題分析】

將已知式轉(zhuǎn)化為,則的展開式中的系數(shù)中的系數(shù),根據(jù)二項式展開式可求得其值.【題目詳解】,所以的展開式中的系數(shù)就是中的系數(shù),而中的系數(shù)為,展開式中的系數(shù)為故答案為:28.【題目點撥】本題考查二項式展開式中的某特定項的系數(shù),關(guān)鍵在于將原表達(dá)式化簡將三項的冪的形式轉(zhuǎn)化為可求的二項式的形式,屬于基礎(chǔ)題.14、【解題分析】

設(shè)弦所在的直線與橢圓相交于、兩點,利用點差法可求得直線的斜率,進(jìn)而可求得直線的點斜式方程,化為一般式即可.【題目詳解】設(shè)弦所在的直線與橢圓相交于、兩點,由于點為弦的中點,則,得,由題意得,兩式相減得,所以,直線的斜率為,所以,弦所在的直線方程為,即.故答案為:.【題目點撥】本題考查利用弦的中點求弦所在直線的方程,一般利用點差法,也可以利用韋達(dá)定理設(shè)而不求法來解答,考查計算能力,屬于中等題.15、(1,)【解題分析】

在定義域[m,n]上的值域是[m2,n2],等價轉(zhuǎn)化為與的圖像在(1,)上恰有兩個交點,考慮相切狀態(tài)可求a的取值范圍.【題目詳解】由題意知:與的圖像在(1,)上恰有兩個交點考查臨界情形:與切于,.故答案為:.【題目點撥】本題主要考查導(dǎo)數(shù)的幾何意義,把已知條件進(jìn)行等價轉(zhuǎn)化是求解的關(guān)鍵,側(cè)重考查數(shù)學(xué)抽象的核心素養(yǎng).16、1【解題分析】

根據(jù)目標(biāo)函數(shù)的解析式形式,分析目標(biāo)函數(shù)的幾何意義,然后判斷求出目標(biāo)函數(shù)取得最優(yōu)解的點的坐標(biāo),即可求解.【題目詳解】作出實數(shù),滿足表示的平面區(qū)域,如圖所示:由可得,則表示直線在軸上的截距,截距越小,越大.由可得,此時最大為1,故答案為:1.【題目點撥】本題主要考查線性規(guī)劃知識的運用,考查學(xué)生的計算能力,考查數(shù)形結(jié)合的數(shù)學(xué)思想.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解題分析】

(1)要證明,只需證明即可;(2)有3個根,可轉(zhuǎn)化為有3個根,即與有3個不同交點,利用導(dǎo)數(shù)作出的圖象即可.【題目詳解】(1)令,則,當(dāng)時,,故在上單調(diào)遞增,所以,即,所以.(2)由已知,,依題意,有3個零點,即有3個根,顯然0不是其根,所以有3個根,令,則,當(dāng)時,,當(dāng)時,,當(dāng)時,,故在單調(diào)遞減,在,上單調(diào)遞增,作出的圖象,易得.故實數(shù)的取值范圍為.【題目點撥】本題考查利用導(dǎo)數(shù)證明不等式以及研究函數(shù)零點個數(shù)問題,考查學(xué)生數(shù)形結(jié)合的思想,是一道中檔題.18、(1)(2)直線恒過定點,詳見解析【解題分析】

(1)依題意由橢圓的簡單性質(zhì)可求出,即得橢圓C的方程;(2)設(shè)直線的方程為:,聯(lián)立直線的方程與橢圓方程可求得點的坐標(biāo),同理可求出點的坐標(biāo),根據(jù)的坐標(biāo)可求出直線的方程,將其化簡成點斜式,即可求出定點坐標(biāo).【題目詳解】(1)由題有,.∴,∴.∴橢圓方程為.(2)設(shè)直線的方程為:,則∴或,∴,同理,當(dāng)時,由有.∴,同理,又∴,當(dāng)時,∴直線的方程為∴直線恒過定點,當(dāng)時,此時也過定點..綜上:直線恒過定點.【題目點撥】本題主要考查利用橢圓的簡單性質(zhì)求橢圓的標(biāo)準(zhǔn)方程,以及直線與橢圓的位置關(guān)系應(yīng)用,定點問題的求法等,意在考查學(xué)生的邏輯推理能力和數(shù)學(xué)運算能力,屬于難題.19、;【解題分析】

根據(jù)題意,求出直線方程并與拋物線方程聯(lián)立,利用韋達(dá)定理,結(jié)合,即可求出拋物線C的方程;設(shè),的中點為,把直線l方程與拋物線方程聯(lián)立,利用判別式求出的取值范圍,利用韋達(dá)定理求出,進(jìn)而求出的中垂線方程,即可求得在軸上的截距的表達(dá)式,然后根據(jù)的取值范圍求解即可.【題目詳解】由題意可知,直線l的方程為,與拋物線方程方程聯(lián)立可得,,設(shè),由韋達(dá)定理可得,,因為,,所以,解得,所以拋物線C的方程為;設(shè),的中點為,由,消去可得,所以判別式,解得或,由韋達(dá)定理可得,,所以的中垂線方程為,令則,因為或,所以即為所求.【題目點撥】本題考查拋物線的標(biāo)準(zhǔn)方程和直線與拋物線的位置關(guān)系,考查向量知識的運用;考查學(xué)生分析問題、解決問題的能力和運算求解能力;屬于中檔題.20、(1),;(2)【解題分析】

(1)解絕對值不等式得,根據(jù)不等式的解集為列出方程組,解出即可;(2)求出的圖像與直線及交點的坐標(biāo),通過分割法將四邊形的面積分為兩個三角形,列出不等式,解不等式即可.【題目詳解】(1)由得:,,即,解得,.(2)的圖像與直線及圍成的四邊形,,,,.過點向引垂線,垂足為,則.化簡得:,(舍)或.故的取值范圍為.【題目點撥】本題主要考查了絕對值不等式的求法,以及絕對值不等式在幾何中的應(yīng)用,屬于中檔題.21、(1);(2).【解題分析】

(1)利用正弦定理邊化角,再利用余弦定理求解即可.(2)為為的中線,所以再平方后利用向量的數(shù)量積公式進(jìn)行求解,再代入可解得,再代入面積公式求解即可.【題目詳解】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論