2024屆云南省峨山縣大龍?zhí)吨袑W(xué)普通高中第一次聯(lián)考高三數(shù)學(xué)試題_第1頁
2024屆云南省峨山縣大龍?zhí)吨袑W(xué)普通高中第一次聯(lián)考高三數(shù)學(xué)試題_第2頁
2024屆云南省峨山縣大龍?zhí)吨袑W(xué)普通高中第一次聯(lián)考高三數(shù)學(xué)試題_第3頁
2024屆云南省峨山縣大龍?zhí)吨袑W(xué)普通高中第一次聯(lián)考高三數(shù)學(xué)試題_第4頁
2024屆云南省峨山縣大龍?zhí)吨袑W(xué)普通高中第一次聯(lián)考高三數(shù)學(xué)試題_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆云南省峨山縣大龍?zhí)吨袑W(xué)普通高中第一次聯(lián)考高三數(shù)學(xué)試題注意事項:1.答題前,考生先將自己的姓名、準(zhǔn)考證號碼填寫清楚,將條形碼準(zhǔn)確粘貼在條形碼區(qū)域內(nèi)。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知數(shù)列滿足,且,則的值是()A. B. C.4 D.2.在直角坐標(biāo)系中,已知A(1,0),B(4,0),若直線x+my﹣1=0上存在點P,使得|PA|=2|PB|,則正實數(shù)m的最小值是()A. B.3 C. D.3.函數(shù)y=sin2x的圖象可能是A. B.C. D.4.已知復(fù)數(shù),則的虛部是()A. B. C. D.15.在長方體中,,則直線與平面所成角的余弦值為()A. B. C. D.6.函數(shù)在的圖象大致為()A. B.C. D.7.已知的面積是,,,則()A.5 B.或1 C.5或1 D.8.已知類產(chǎn)品共兩件,類產(chǎn)品共三件,混放在一起,現(xiàn)需要通過檢測將其區(qū)分開來,每次隨機檢測一件產(chǎn)品,檢測后不放回,直到檢測出2件類產(chǎn)品或者檢測出3件類產(chǎn)品時,檢測結(jié)束,則第一次檢測出類產(chǎn)品,第二次檢測出類產(chǎn)品的概率為()A. B. C. D.9.設(shè),則()A. B. C. D.10.已知拋物線,過拋物線上兩點分別作拋物線的兩條切線為兩切線的交點為坐標(biāo)原點若,則直線與的斜率之積為()A. B. C. D.11.一個幾何體的三視圖如圖所示,則這個幾何體的體積為()A. B.C. D.12.a(chǎn)為正實數(shù),i為虛數(shù)單位,,則a=()A.2 B. C. D.1二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(shù),若關(guān)于x的方程有且只有兩個不相等的實數(shù)根,則實數(shù)a的取值范圍是_______________.14.設(shè)命題:,,則:__________.15.已知實數(shù)a,b,c滿足,則的最小值是______.16.如圖所示梯子結(jié)構(gòu)的點數(shù)依次構(gòu)成數(shù)列,則________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在直角中,,通過以直線為軸順時針旋轉(zhuǎn)得到().點為斜邊上一點.點為線段上一點,且.(1)證明:平面;(2)當(dāng)直線與平面所成的角取最大值時,求二面角的正弦值.18.(12分)已知函數(shù)(1)當(dāng)時,證明,在恒成立;(2)若在處取得極大值,求的取值范圍.19.(12分)選修4-4:坐標(biāo)系與參數(shù)方程在平面直角坐標(biāo)系xOy中,已知曲線C的參數(shù)方程為(α為參數(shù)).以直角坐標(biāo)系原點O為極點,x軸的正半軸為極軸建立極坐標(biāo)系,直線l的極坐標(biāo)方程為,點P為曲線C上的動點,求點P到直線l距離的最大值.20.(12分)已知函數(shù),其中,.(1)函數(shù)的圖象能否與x軸相切?若能,求出實數(shù)a;若不能,請說明理由.(2)若在處取得極大值,求實數(shù)a的取值范圍.21.(12分)已知實數(shù)x,y,z滿足,證明:.22.(10分)已知分別是橢圓的左、右焦點,直線與交于兩點,,且.(1)求的方程;(2)已知點是上的任意一點,不經(jīng)過原點的直線與交于兩點,直線的斜率都存在,且,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解題分析】由,可得,所以數(shù)列是公比為的等比數(shù)列,所以,則,則,故選B.點睛:本題考查了等比數(shù)列的概念,等比數(shù)列的通項公式及等比數(shù)列的性質(zhì)的應(yīng)用,試題有一定的技巧,屬于中檔試題,解決這類問題的關(guān)鍵在于熟練掌握等比數(shù)列的有關(guān)公式并能靈活運用,尤其需要注意的是,等比數(shù)列的性質(zhì)和在使用等比數(shù)列的前n項和公式時,應(yīng)該要分類討論,有時還應(yīng)善于運用整體代換思想簡化運算過程.2、D【解題分析】

設(shè)點,由,得關(guān)于的方程.由題意,該方程有解,則,求出正實數(shù)m的取值范圍,即求正實數(shù)m的最小值.【題目詳解】由題意,設(shè)點.,即,整理得,則,解得或..故選:.【題目點撥】本題考查直線與方程,考查平面內(nèi)兩點間距離公式,屬于中檔題.3、D【解題分析】分析:先研究函數(shù)的奇偶性,再研究函數(shù)在上的符號,即可判斷選擇.詳解:令,因為,所以為奇函數(shù),排除選項A,B;因為時,,所以排除選項C,選D.點睛:有關(guān)函數(shù)圖象的識別問題的常見題型及解題思路:(1)由函數(shù)的定義域,判斷圖象的左、右位置,由函數(shù)的值域,判斷圖象的上、下位置;(2)由函數(shù)的單調(diào)性,判斷圖象的變化趨勢;(3)由函數(shù)的奇偶性,判斷圖象的對稱性;(4)由函數(shù)的周期性,判斷圖象的循環(huán)往復(fù).4、C【解題分析】

化簡復(fù)數(shù),分子分母同時乘以,進而求得復(fù)數(shù),再求出,由此得到虛部.【題目詳解】,,所以的虛部為.故選:C【題目點撥】本小題主要考查復(fù)數(shù)的乘法、除法運算,考查共軛復(fù)數(shù)的虛部,屬于基礎(chǔ)題.5、C【解題分析】

在長方體中,得與平面交于,過做于,可證平面,可得為所求解的角,解,即可求出結(jié)論.【題目詳解】在長方體中,平面即為平面,過做于,平面,平面,平面,為與平面所成角,在,,直線與平面所成角的余弦值為.故選:C.【題目點撥】本題考查直線與平面所成的角,定義法求空間角要體現(xiàn)“做”“證”“算”,三步驟缺一不可,屬于基礎(chǔ)題.6、B【解題分析】

先考慮奇偶性,再考慮特殊值,用排除法即可得到正確答案.【題目詳解】是奇函數(shù),排除C,D;,排除A.故選:B.【題目點撥】本題考查函數(shù)圖象的判斷,屬于??碱}.7、B【解題分析】∵,,∴①若為鈍角,則,由余弦定理得,解得;②若為銳角,則,同理得.故選B.8、D【解題分析】

根據(jù)分步計數(shù)原理,由古典概型概率公式可得第一次檢測出類產(chǎn)品的概率,不放回情況下第二次檢測出類產(chǎn)品的概率,即可得解.【題目詳解】類產(chǎn)品共兩件,類產(chǎn)品共三件,則第一次檢測出類產(chǎn)品的概率為;不放回情況下,剩余4件產(chǎn)品,則第二次檢測出類產(chǎn)品的概率為;故第一次檢測出類產(chǎn)品,第二次檢測出類產(chǎn)品的概率為;故選:D.【題目點撥】本題考查了分步乘法計數(shù)原理的應(yīng)用,古典概型概率計算公式的應(yīng)用,屬于基礎(chǔ)題.9、C【解題分析】試題分析:,.故C正確.考點:復(fù)合函數(shù)求值.10、A【解題分析】

設(shè)出A,B的坐標(biāo),利用導(dǎo)數(shù)求出過A,B的切線的斜率,結(jié)合,可得x1x2=﹣1.再寫出OA,OB所在直線的斜率,作積得答案.【題目詳解】解:設(shè)A(),B(),由拋物線C:x2=1y,得,則y′.∴,,由,可得,即x1x2=﹣1.又,,∴.故選:A.點睛:(1)本題主要考查拋物線的簡單幾何性質(zhì),考查直線和拋物線的位置關(guān)系,意在考查學(xué)生對這些基礎(chǔ)知識的掌握能力和分析推理能力.(2)解答本題的關(guān)鍵是解題的思路,由于與切線有關(guān),所以一般先設(shè)切點,先設(shè)A,B,,再求切線PA,PB方程,求點P坐標(biāo),再根據(jù)得到最后求直線與的斜率之積.如果先設(shè)點P的坐標(biāo),計算量就大一些.11、B【解題分析】

還原幾何體可知原幾何體為半個圓柱和一個四棱錐組成的組合體,分別求解兩個部分的體積,加和得到結(jié)果.【題目詳解】由三視圖還原可知,原幾何體下半部分為半個圓柱,上半部分為一個四棱錐半個圓柱體積為:四棱錐體積為:原幾何體體積為:本題正確選項:【題目點撥】本題考查三視圖的還原、組合體體積的求解問題,關(guān)鍵在于能夠準(zhǔn)確還原幾何體,從而分別求解各部分的體積.12、B【解題分析】

,選B.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

畫出函數(shù)的圖象,再畫的圖象,求出一個交點時的的值,然后平行移動可得有兩個交點時的的范圍.【題目詳解】函數(shù)的圖象如圖所示:因為方程有且只有兩個不相等的實數(shù)根,所以圖象與直線有且只有兩個交點即可,當(dāng)過點時兩個函數(shù)有一個交點,即時,與函數(shù)有一個交點,由圖象可知,直線向下平移后有兩個交點,可得,故答案為:.【題目點撥】本題主要考查了方程的跟與函數(shù)的圖象交點的轉(zhuǎn)化,數(shù)形結(jié)合的思想,屬于中檔題.14、,【解題分析】

存在符號改任意符號,結(jié)論變相反.【題目詳解】命題是特稱命題,則為全稱命題,故將“”改為“”,將“”改為“”,故:,.故答案為:,.【題目點撥】本題考查全(特)稱命題.對全(特)稱命題進行否定的方法:(1)改寫量詞:全稱量詞改寫為存在量詞,存在量詞改寫為全稱量詞;(2)否定結(jié)論:對于一般命題的否定只需直接否定結(jié)論即可.15、【解題分析】

先分離出,應(yīng)用基本不等式轉(zhuǎn)化為關(guān)于c的二次函數(shù),進而求出最小值.【題目詳解】解:若取最小值,則異號,,根據(jù)題意得:,又由,即有,則,即的最小值為,故答案為:【題目點撥】本題考查了基本不等式以及二次函數(shù)配方求最值,屬于中檔題.16、【解題分析】

根據(jù)圖像歸納,根據(jù)等差數(shù)列求和公式得到答案.【題目詳解】根據(jù)圖像:,,故,故.故答案為:.【題目點撥】本題考查了等差數(shù)列的應(yīng)用,意在考查學(xué)生的計算能力和應(yīng)用能力.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解題分析】

(1)先算出的長度,利用勾股定理證明,再由已知可得,利用線面垂直的判定定理即可證明;(2)由(1)可得為直線與平面所成的角,要使其最大,則應(yīng)最小,可得為中點,然后建系分別求出平面的法向量即可算得二面角的余弦值,進一步得到正弦值.【題目詳解】(1)在中,,由余弦定理得,∴,∴,由題意可知:∴,,,∴平面,平面,∴,又,∴平面.(2)以為坐標(biāo)原點,以,,的方向為,,軸的正方向,建立空間直角坐標(biāo)系.∵平面,∴在平面上的射影是,∴與平面所成的角是,∴最大時,即,點為中點.,,,,,,,設(shè)平面的法向量,由,得,令,得,所以平面的法向量,同理,設(shè)平面的法向量,由,得,令,得,所以平面的法向量,∴,,故二面角的正弦值為.【題目點撥】本題考查線面垂直的判定定理以及利用向量法求二面角的正弦值,考查學(xué)生的運算求解能力,是一道中檔題.18、(1)證明見解析(2)【解題分析】

(1)根據(jù),求導(dǎo),令,用導(dǎo)數(shù)法求其最小值.設(shè)研究在處左正右負,求導(dǎo),分,,三種情況討論求解.【題目詳解】(1)因為,所以,令,則,所以是的增函數(shù),故,即.因為所以,①當(dāng)時,,所以函數(shù)在上單調(diào)遞增.若,則若,則所以函數(shù)的單調(diào)遞增區(qū)間是,單調(diào)遞減區(qū)間是,所以在處取得極小值,不符合題意,②當(dāng)時,所以函數(shù)在上單調(diào)遞減.若,則若,則所以的單調(diào)遞減區(qū)間是,單調(diào)遞增區(qū)間是,所以在處取得極大值,符合題意.③當(dāng)時,,使得,即,但當(dāng)時,即所以函數(shù)在上單調(diào)遞減,所以,即函數(shù))在上單調(diào)遞減,不符合題意綜上所述,的取值范圍是【題目點撥】本題主要考查導(dǎo)數(shù)與函數(shù)的單調(diào)性和極值,還考查了轉(zhuǎn)化化歸的思想和運算求解的能力,屬于難題.19、(1),(2)【解題分析】

試題分析:利用將極坐標(biāo)方程化為直角坐標(biāo)方程:化簡為ρcosθ+ρsinθ=1,即為x+y=1.再利用點到直線距離公式得:設(shè)點P的坐標(biāo)為(2cosα,sinα),得P到直線l的距離試題解析:解:化簡為ρcosθ+ρsinθ=1,則直線l的直角坐標(biāo)方程為x+y=1.設(shè)點P的坐標(biāo)為(2cosα,sinα),得P到直線l的距離,dmax=.考點:極坐標(biāo)方程化為直角坐標(biāo)方程,點到直線距離公式20、(1)答案見解析(2)【解題分析】

(1)假設(shè)函數(shù)的圖象與x軸相切于,根據(jù)相切可得方程組,看方程是否有解即可;(2)求出的導(dǎo)數(shù),設(shè)(),根據(jù)函數(shù)的單調(diào)性及在處取得極大值求出a的范圍即可.【題目詳解】(1)函數(shù)的圖象不能與x軸相切,理由若下:.假設(shè)函數(shù)的圖象與x軸相切于則即顯然,,代入中得,無實數(shù)解.故函數(shù)的圖象不能與x軸相切.(2)(),,設(shè)(),恒大于零.在上單調(diào)遞增.又,,,∴存在唯一,使,且時,時,①當(dāng)時,恒成立,在單調(diào)遞增,無極值,不合題意.②當(dāng)時,可得當(dāng)時,,當(dāng)時,.所以在內(nèi)單調(diào)遞減,在內(nèi)單調(diào)遞增,所以在處取得極小值,不合題意.③當(dāng)時,可得當(dāng)時,,當(dāng)時,.所以在內(nèi)單調(diào)遞增,在內(nèi)單調(diào)遞減,所以在處取得極大值,符合題意.此時由得即,綜上可知,實數(shù)a的取值范圍為.【題目點撥】本題考查了函數(shù)的單調(diào)性,最值問題,考查導(dǎo)數(shù)的應(yīng)用以及分類討論思想,轉(zhuǎn)化思想,屬于難題.21、見解析【解題分析】

已知條件,需要證明的是,要想利用柯西不

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論