2024屆湖北省陽新縣興國高級中學(xué)高考適應(yīng)性測試(二)數(shù)學(xué)試題_第1頁
2024屆湖北省陽新縣興國高級中學(xué)高考適應(yīng)性測試(二)數(shù)學(xué)試題_第2頁
2024屆湖北省陽新縣興國高級中學(xué)高考適應(yīng)性測試(二)數(shù)學(xué)試題_第3頁
2024屆湖北省陽新縣興國高級中學(xué)高考適應(yīng)性測試(二)數(shù)學(xué)試題_第4頁
2024屆湖北省陽新縣興國高級中學(xué)高考適應(yīng)性測試(二)數(shù)學(xué)試題_第5頁
已閱讀5頁,還剩14頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

2024屆湖北省陽新縣興國高級中學(xué)高考適應(yīng)性測試(二)數(shù)學(xué)試題注意事項1.考試結(jié)束后,請將本試卷和答題卡一并交回.2.答題前,請務(wù)必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規(guī)定位置.3.請認真核對監(jiān)考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應(yīng)選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知全集,則集合的子集個數(shù)為()A. B. C. D.2.已知函數(shù),,若對任意的,存在實數(shù)滿足,使得,則的最大值是()A.3 B.2 C.4 D.53.等差數(shù)列的前項和為,若,,則數(shù)列的公差為()A.-2 B.2 C.4 D.74.已知集合,,若AB,則實數(shù)的取值范圍是()A. B. C. D.5.1777年,法國科學(xué)家蒲豐在宴請客人時,在地上鋪了一張白紙,上面畫著一條條等距離的平行線,而他給每個客人發(fā)許多等質(zhì)量的,長度等于相鄰兩平行線距離的一半的針,讓他們隨意投放.事后,蒲豐對針落地的位置進行統(tǒng)計,發(fā)現(xiàn)共投針2212枚,與直線相交的有704枚.根據(jù)這次統(tǒng)計數(shù)據(jù),若客人隨意向這張白紙上投放一根這樣的針,則針落地后與直線相交的概率約為()A. B. C. D.6.A. B. C. D.7.某三棱錐的三視圖如圖所示,網(wǎng)格紙上小正方形的邊長為,則該三棱錐外接球的表面積為()A. B. C. D.8.已知,則下列說法中正確的是()A.是假命題 B.是真命題C.是真命題 D.是假命題9.秦九韶是我國南宋時期的數(shù)學(xué)家,普州(現(xiàn)四川省安岳縣)人,他在所著的《數(shù)書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法.如圖的程序框圖給出了利用秦九韶算法求某多項式值的一個實例,若輸入的值為2,則輸出的值為A. B. C. D.10.設(shè)等差數(shù)列的前項和為,若,則()A.23 B.25 C.28 D.2911.若復(fù)數(shù)滿足,則()A. B. C.2 D.12.某四棱錐的三視圖如圖所示,記為此棱錐所有棱的長度的集合,則().A.,且 B.,且C.,且 D.,且二、填空題:本題共4小題,每小題5分,共20分。13.觀察下列式子,,,,……,根據(jù)上述規(guī)律,第個不等式應(yīng)該為__________.14.已知數(shù)列是等比數(shù)列,,則__________.15.已知函數(shù)為偶函數(shù),則_____.16.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是______cm2,體積是_____三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)當(dāng)時,求函數(shù)的值域;(2)的角的對邊分別為且,,求邊上的高的最大值.18.(12分)已知橢圓的左右焦點分別是,點在橢圓上,滿足(1)求橢圓的標準方程;(2)直線過點,且與橢圓只有一個公共點,直線與的傾斜角互補,且與橢圓交于異于點的兩點,與直線交于點(介于兩點之間),是否存在直線,使得直線,,的斜率按某種排序能構(gòu)成等比數(shù)列?若能,求出的方程,若不能,請說理由.19.(12分)已知是圓:的直徑,動圓過,兩點,且與直線相切.(1)若直線的方程為,求的方程;(2)在軸上是否存在一個定點,使得以為直徑的圓恰好與軸相切?若存在,求出點的坐標;若不存在,請說明理由.20.(12分)已知矩陣,且二階矩陣M滿足AMB,求M的特征值及屬于各特征值的一個特征向量.21.(12分)已知函數(shù),設(shè)的最小值為m.(1)求m的值;(2)是否存在實數(shù)a,b,使得,?并說明理由.22.(10分)在四棱錐中,底面為直角梯形,,面.(1)在線段上是否存在點,使面,說明理由;(2)求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解題分析】

先求B.再求,求得則子集個數(shù)可求【題目詳解】由題=,則集合,故其子集個數(shù)為故選C【題目點撥】此題考查了交、并、補集的混合運算及子集個數(shù),熟練掌握各自的定義是解本題的關(guān)鍵,是基礎(chǔ)題2、A【解題分析】

根據(jù)條件將問題轉(zhuǎn)化為,對于恒成立,然后構(gòu)造函數(shù),然后求出的范圍,進一步得到的最大值.【題目詳解】,,對任意的,存在實數(shù)滿足,使得,易得,即恒成立,,對于恒成立,設(shè),則,令,在恒成立,,故存在,使得,即,當(dāng)時,,單調(diào)遞減;當(dāng)時,,單調(diào)遞增.,將代入得:,,且,故選:A【題目點撥】本題考查了利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,零點存在定理和不等式恒成立問題,考查了轉(zhuǎn)化思想,屬于難題.3、B【解題分析】

在等差數(shù)列中由等差數(shù)列公式與下標和的性質(zhì)求得,再由等差數(shù)列通項公式求得公差.【題目詳解】在等差數(shù)列的前項和為,則則故選:B【題目點撥】本題考查等差數(shù)列中求由已知關(guān)系求公差,屬于基礎(chǔ)題.4、D【解題分析】

先化簡,再根據(jù),且AB求解.【題目詳解】因為,又因為,且AB,所以.故選:D【題目點撥】本題主要考查集合的基本運算,還考查了運算求解的能力,屬于基礎(chǔ)題.5、D【解題分析】

根據(jù)統(tǒng)計數(shù)據(jù),求出頻率,用以估計概率.【題目詳解】.故選:D.【題目點撥】本題以數(shù)學(xué)文化為背景,考查利用頻率估計概率,屬于基礎(chǔ)題.6、A【解題分析】

直接利用復(fù)數(shù)代數(shù)形式的乘除運算化簡得答案.【題目詳解】本題正確選項:【題目點撥】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,是基礎(chǔ)的計算題.7、C【解題分析】

作出三棱錐的實物圖,然后補成直四棱錐,且底面為矩形,可得知三棱錐的外接球和直四棱錐的外接球為同一個球,然后計算出矩形的外接圓直徑,利用公式可計算出外接球的直徑,再利用球體的表面積公式即可得出該三棱錐的外接球的表面積.【題目詳解】三棱錐的實物圖如下圖所示:將其補成直四棱錐,底面,可知四邊形為矩形,且,.矩形的外接圓直徑,且.所以,三棱錐外接球的直徑為,因此,該三棱錐的外接球的表面積為.故選:C.【題目點撥】本題考查三棱錐外接球的表面積,解題時要結(jié)合三視圖作出三棱錐的實物圖,并分析三棱錐的結(jié)構(gòu),選擇合適的模型進行計算,考查推理能力與計算能力,屬于中等題.8、D【解題分析】

舉例判斷命題p與q的真假,再由復(fù)合命題的真假判斷得答案.【題目詳解】當(dāng)時,故命題為假命題;記f(x)=ex﹣x的導(dǎo)數(shù)為f′(x)=ex,易知f(x)=ex﹣x(﹣∞,0)上遞減,在(0,+∞)上遞增,∴f(x)>f(0)=1>0,即,故命題為真命題;∴是假命題故選D【題目點撥】本題考查復(fù)合命題的真假判斷,考查全稱命題與特稱命題的真假,考查指對函數(shù)的圖象與性質(zhì),是基礎(chǔ)題.9、C【解題分析】

由題意,模擬程序的運行,依次寫出每次循環(huán)得到的,的值,當(dāng)時,不滿足條件,跳出循環(huán),輸出的值.【題目詳解】解:初始值,,程序運行過程如下表所示:,,,,,,,,,,,,,,,,,,,,,跳出循環(huán),輸出的值為其中①②①—②得.故選:.【題目點撥】本題主要考查了循環(huán)結(jié)構(gòu)的程序框圖的應(yīng)用,正確依次寫出每次循環(huán)得到,的值是解題的關(guān)鍵,屬于基礎(chǔ)題.10、D【解題分析】

由可求,再求公差,再求解即可.【題目詳解】解:是等差數(shù)列,又,公差為,,故選:D【題目點撥】考查等差數(shù)列的有關(guān)性質(zhì)、運算求解能力和推理論證能力,是基礎(chǔ)題.11、D【解題分析】

把已知等式變形,利用復(fù)數(shù)代數(shù)形式的乘除運算化簡,再由復(fù)數(shù)模的計算公式計算.【題目詳解】解:由題意知,,,∴,故選:D.【題目點撥】本題考查復(fù)數(shù)代數(shù)形式的乘除運算,考查復(fù)數(shù)模的求法.12、D【解題分析】

首先把三視圖轉(zhuǎn)換為幾何體,根據(jù)三視圖的長度,進一步求出個各棱長.【題目詳解】根據(jù)幾何體的三視圖轉(zhuǎn)換為幾何體為:該幾何體為四棱錐體,如圖所示:所以:,,.故選:D..【題目點撥】本題考查三視圖和幾何體之間的轉(zhuǎn)換,主要考查運算能力和轉(zhuǎn)換能力及思維能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

根據(jù)題意,依次分析不等式的變化規(guī)律,綜合可得答案.【題目詳解】解:根據(jù)題意,對于第一個不等式,,則有,對于第二個不等式,,則有,對于第三個不等式,,則有,依此類推:第個不等式為:,故答案為.【題目點撥】本題考查歸納推理的應(yīng)用,分析不等式的變化規(guī)律.14、【解題分析】

根據(jù)等比數(shù)列通項公式,首先求得,然后求得.【題目詳解】設(shè)的公比為,由,得,故.故答案為:【題目點撥】本小題主要考查等比數(shù)列通項公式的基本量計算,屬于基礎(chǔ)題.15、【解題分析】

根據(jù)偶函數(shù)的定義列方程,化簡求得的值.【題目詳解】由于為偶函數(shù),所以,即,即,即,即,即,即,即,所以.故答案為:【題目點撥】本小題主要考查根據(jù)函數(shù)的奇偶性求參數(shù),考查運算求解能力,屬于中檔題.16、20+45,8【解題分析】試題分析:由題意得,該幾何體為三棱柱,故其表面積S=2×1體積V=12×4×2×2=8,故填:20+4考點:1.三視圖;2.空間幾何體的表面積與體積.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1).(2)【解題分析】

(1)由題意利用三角恒等變換化簡函數(shù)的解析式,再利用正弦函數(shù)的定義域和值域,得出結(jié)論.(2)由題意利用余弦定理?三角形的面積公式?基本不等式求得的最大值,可得邊上的高的最大值.【題目詳解】解:(1)∵函數(shù),當(dāng)時,,.(2)中,,∴.由余弦定理可得,當(dāng)且僅當(dāng)時,取等號,即的最大值為3.再根據(jù),故當(dāng)取得最大值3時,取得最大值為.【題目點撥】本題考查降冪公式、兩角和的正弦公式,考查正弦函數(shù)的性質(zhì),余弦定理,三角形面積公式,所用公式較多,選用恰當(dāng)?shù)墓绞墙忸}關(guān)鍵,本題屬于中檔題.18、(1);(2)不能,理由見解析【解題分析】

(1)設(shè),則,由此即可求出橢圓方程;(2)設(shè)直線的方程為,聯(lián)立直線與橢圓的方程可求得,則直線斜率為,設(shè)其方程為,聯(lián)立直線與橢圓方程,結(jié)合韋達定理可得關(guān)于對稱,可求得,假設(shè)存在直線滿足題意,設(shè),可得,由此可得答案.【題目詳解】解:(1)設(shè),則,,所以橢圓方程為;(2)設(shè)直線的方程為,與聯(lián)立得,∴,因為兩直線的傾斜角互補,所以直線斜率為,設(shè)直線的方程為,聯(lián)立整理得,,所以關(guān)于對稱,由正弦定理得,因為,所以,由上得,假設(shè)存在直線滿足題意,設(shè),按某種排列成等比數(shù)列,設(shè)公比為,則,所以,則此時直線與平行或重合,與題意不符,所以不存在滿足題意的直線.【題目點撥】本題主要考查直線與橢圓的位置關(guān)系,考查計算能力與推理能力,屬于難題.19、(1)或.(2)存在,;【解題分析】

(1)根據(jù)動圓過,兩點,可得圓心在的垂直平分線上,由直線的方程為,可知在直線上;設(shè),由動圓與直線相切可得動圓的半徑為;又由,及垂徑定理即可確定的值,進而確定圓的方程.(2)方法一:設(shè),可得圓的半徑為,根據(jù),可得方程為并化簡可得的軌跡方程為.設(shè),,可得的中點,進而由兩點間距離公式表示出半徑,表示出到軸的距離,代入化簡即可求得的值,進而確定所過定點的坐標;方法二:同上可得的軌跡方程為,由拋物線定義可求得,表示出線段的中點的坐標,根據(jù)到軸的距離可得等量關(guān)系,進而確定所過定點的坐標.【題目詳解】(1)因為過點,,所以圓心在的垂直平分線上.由已知的方程為,且,關(guān)于于坐標原點對稱,所以在直線上,故可設(shè).因為與直線相切,所以的半徑為.由已知得,,又,故可得,解得或.故的半徑或,所以的方程為或.(2)法一:設(shè),由已知得的半徑為,.由于,故可得,化簡得的軌跡方程為.設(shè),,則得,的中點,則以為直徑的圓的半徑為:,到軸的距離為,令,①化簡得,即,故當(dāng)時,①式恒成立.所以存在定點,使得以為直徑的圓與軸相切.法二:設(shè),由已知得的半徑為,.由于,故可得,化簡得的軌跡方程為.設(shè),因為拋物線的焦點坐標為,點在拋物線上,所以,線段的中點的坐標為,則到軸的距離為,而,故以為徑的圓與軸切,所以當(dāng)點與重合時,符合題意,所以存在定點,使得以為直徑的圓與軸相切.【題目點撥】本題考查了圓的標準方程求法,動點軌跡方程的求法,拋物線定義及定點問題的解法綜合應(yīng)用,屬于難題.20、特征值為1,特征向量為.【解題分析】

設(shè)出矩陣M結(jié)合矩陣運算和矩陣相等的條件可求矩陣M,然后利用可求特征值的另一個特征向量.【題目詳解】設(shè)矩陣M=,則AM=,所以,解得,所以M=,則矩陣M的特征方程為,解得,即特征值為1,設(shè)特征值的特征向量為,則,即,解得x=0,所以屬于特征值的的一個特征向量為.【題目點撥】本題主要考查矩陣的運算及特征量的求解,矩陣運算的關(guān)鍵是明確其運算規(guī)則,側(cè)重考查數(shù)學(xué)運算的核心素養(yǎng).21、(1)(2)不存在;詳見解析【解題分析】

(1)將函數(shù)去絕對值化為分段函數(shù)的形式,從而可求得函數(shù)的最小值,進而可得m.(2)由,利用基本不等式即可求出.【題目詳解】(1);(2),若,同號,,不成立;或,異號,,不成立;故不存在實數(shù),,使得,.【題目點撥】本題考查了分段函數(shù)的最值、基本不等式的應(yīng)用,屬于基礎(chǔ)題.22、(1)存在;詳見解析(2)【解題分析】

(1)利用面面平行的性質(zhì)定理可得,為上靠近點的三等分點,中點,證明

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論