2024年上海市上海大學市北附屬中學高三上數學期末統(tǒng)考模擬試題含解析_第1頁
2024年上海市上海大學市北附屬中學高三上數學期末統(tǒng)考模擬試題含解析_第2頁
2024年上海市上海大學市北附屬中學高三上數學期末統(tǒng)考模擬試題含解析_第3頁
2024年上海市上海大學市北附屬中學高三上數學期末統(tǒng)考模擬試題含解析_第4頁
2024年上海市上海大學市北附屬中學高三上數學期末統(tǒng)考模擬試題含解析_第5頁
已閱讀5頁,還剩15頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2024年上海市上海大學市北附屬中學高三上數學期末統(tǒng)考模擬試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數在區(qū)間有三個零點,,,且,若,則的最小正周期為()A. B. C. D.2.已知函數f(x)=sin2x+sin2(x),則f(x)的最小值為()A. B. C. D.3.執(zhí)行下面的程序框圖,如果輸入,,則計算機輸出的數是()A. B. C. D.4.一個四棱錐的三視圖如圖所示(其中主視圖也叫正視圖,左視圖也叫側視圖),則這個四棱錐中最最長棱的長度是().A. B. C. D.5.某醫(yī)院擬派2名內科醫(yī)生、3名外科醫(yī)生和3名護士共8人組成兩個醫(yī)療分隊,平均分到甲、乙兩個村進行義務巡診,其中每個分隊都必須有內科醫(yī)生、外科醫(yī)生和護士,則不同的分配方案有A.72種 B.36種 C.24種 D.18種6.設全集為R,集合,,則A. B. C. D.7.已知雙曲線,點是直線上任意一點,若圓與雙曲線的右支沒有公共點,則雙曲線的離心率取值范圍是().A. B. C. D.8.已知函數,且),則“在上是單調函數”是“”的()A.充分不必要條件 B.必要不充分條件 C.充分必要條件 D.既不充分也不必要條件9.設是雙曲線的左、右焦點,若雙曲線右支上存在一點,使(為坐標原點),且,則雙曲線的離心率為()A. B. C. D.10.使得的展開式中含有常數項的最小的n為()A. B. C. D.11.設正項等比數列的前n項和為,若,,則公比()A. B.4 C. D.212.已知為非零向量,“”為“”的()A.充分不必要條件 B.充分必要條件C.必要不充分條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.點是曲線()圖象上的一個定點,過點的切線方程為,則實數k的值為______.14.設實數,若函數的最大值為,則實數的最大值為______.15.如圖,在△ABC中,E為邊AC上一點,且,P為BE上一點,且滿足,則的最小值為______.16.農歷五月初五是端午節(jié),民間有吃粽子的習慣,粽子又稱粽籺,俗稱“粽子”,古稱“角黍”,是端午節(jié)大家都會品嘗的食品,傳說這是為了紀念戰(zhàn)國時期楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個邊長為1的正三角形構成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為____;若該六面體內有一球,則該球體積的最大值為____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在世界讀書日期間,某地區(qū)調查組對居民閱讀情況進行了調查,獲得了一個容量為200的樣本,其中城鎮(zhèn)居民140人,農村居民60人.在這些居民中,經常閱讀的城鎮(zhèn)居民有100人,農村居民有30人.(1)填寫下面列聯表,并判斷能否有99%的把握認為經常閱讀與居民居住地有關?城鎮(zhèn)居民農村居民合計經常閱讀10030不經常閱讀合計200(2)從該地區(qū)城鎮(zhèn)居民中,隨機抽取5位居民參加一次閱讀交流活動,記這5位居民中經常閱讀的人數為,若用樣本的頻率作為概率,求隨機變量的期望.附:,其中.0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.82818.(12分)如圖,在正四棱錐中,,點、分別在線段、上,.(1)若,求證:⊥;(2)若二面角的大小為,求線段的長.19.(12分)已知,函數.(Ⅰ)若在區(qū)間上單調遞增,求的值;(Ⅱ)若恒成立,求的最大值.(參考數據:)20.(12分)某調查機構為了了解某產品年產量x(噸)對價格y(千克/噸)和利潤z的影響,對近五年該產品的年產量和價格統(tǒng)計如下表:x12345y17.016.515.513.812.2(1)求y關于x的線性回歸方程;(2)若每噸該產品的成本為12千元,假設該產品可全部賣出,預測當年產量為多少時,年利潤w取到最大值?參考公式:21.(12分)中的內角,,的對邊分別是,,,若,.(1)求;(2)若,點為邊上一點,且,求的面積.22.(10分)在四棱錐的底面中,,,平面,是的中點,且(Ⅰ)求證:平面;(Ⅱ)求二面角的余弦值;(Ⅲ)線段上是否存在點,使得,若存在指出點的位置,若不存在請說明理由.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

根據題意,知當時,,由對稱軸的性質可知和,即可求出,即可求出的最小正周期.【詳解】解:由于在區(qū)間有三個零點,,,當時,,∴由對稱軸可知,滿足,即.同理,滿足,即,∴,,所以最小正周期為:.故選:C.【點睛】本題考查正弦型函數的最小正周期,涉及函數的對稱性的應用,考查計算能力.2、A【解析】

先通過降冪公式和輔助角法將函數轉化為,再求最值.【詳解】已知函數f(x)=sin2x+sin2(x),=,=,因為,所以f(x)的最小值為.故選:A【點睛】本題主要考查倍角公式及兩角和與差的三角函數的逆用,還考查了運算求解的能力,屬于中檔題.3、B【解析】

先明確該程序框圖的功能是計算兩個數的最大公約數,再利用輾轉相除法計算即可.【詳解】本程序框圖的功能是計算,中的最大公約數,所以,,,故當輸入,,則計算機輸出的數是57.故選:B.【點睛】本題考查程序框圖的功能,做此類題一定要注意明確程序框圖的功能是什么,本題是一道基礎題.4、A【解析】

作出其直觀圖,然后結合數據根據勾股定定理計算每一條棱長即可.【詳解】根據三視圖作出該四棱錐的直觀圖,如圖所示,其中底面是直角梯形,且,,平面,且,∴,,,,∴這個四棱錐中最長棱的長度是.故選.【點睛】本題考查了四棱錐的三視圖的有關計算,正確還原直觀圖是解題關鍵,屬于基礎題.5、B【解析】

根據條件2名內科醫(yī)生,每個村一名,3名外科醫(yī)生和3名護士,平均分成兩組,則分1名外科,2名護士和2名外科醫(yī)生和1名護士,根據排列組合進行計算即可.【詳解】2名內科醫(yī)生,每個村一名,有2種方法,3名外科醫(yī)生和3名護士,平均分成兩組,要求外科醫(yī)生和護士都有,則分1名外科,2名護士和2名外科醫(yī)生和1名護士,若甲村有1外科,2名護士,則有C3若甲村有2外科,1名護士,則有C3則總共的分配方案為2×(9+9)=2×18=36種,故選:B.【點睛】本題主要考查了分組分配問題,解決這類問題的關鍵是先分組再分配,屬于??碱}型.6、B【解析】分析:由題意首先求得,然后進行交集運算即可求得最終結果.詳解:由題意可得:,結合交集的定義可得:.本題選擇B選項.點睛:本題主要考查交集的運算法則,補集的運算法則等知識,意在考查學生的轉化能力和計算求解能力.7、B【解析】

先求出雙曲線的漸近線方程,可得則直線與直線的距離,根據圓與雙曲線的右支沒有公共點,可得,解得即可.【詳解】由題意,雙曲線的一條漸近線方程為,即,∵是直線上任意一點,則直線與直線的距離,∵圓與雙曲線的右支沒有公共點,則,∴,即,又故的取值范圍為,故選:B.【點睛】本題主要考查了直線和雙曲線的位置關系,以及兩平行線間的距離公式,其中解答中根據圓與雙曲線的右支沒有公共點得出是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.8、C【解析】

先求出復合函數在上是單調函數的充要條件,再看其和的包含關系,利用集合間包含關系與充要條件之間的關系,判斷正確答案.【詳解】,且),由得或,即的定義域為或,(且)令,其在單調遞減,單調遞增,在上是單調函數,其充要條件為即.故選:C.【點睛】本題考查了復合函數的單調性的判斷問題,充要條件的判斷,屬于基礎題.9、D【解析】

利用向量運算可得,即,由為的中位線,得到,所以,再根據雙曲線定義即可求得離心率.【詳解】取的中點,則由得,即;在中,為的中位線,所以,所以;由雙曲線定義知,且,所以,解得,故選:D【點睛】本題綜合考查向量運算與雙曲線的相關性質,難度一般.10、B【解析】二項式展開式的通項公式為,若展開式中有常數項,則,解得,當r取2時,n的最小值為5,故選B【考點定位】本題考查二項式定理的應用.11、D【解析】

由得,又,兩式相除即可解出.【詳解】解:由得,又,∴,∴,或,又正項等比數列得,∴,故選:D.【點睛】本題主要考查等比數列的性質的應用,屬于基礎題.12、B【解析】

由數量積的定義可得,為實數,則由可得,根據共線的性質,可判斷;再根據判斷,由等價法即可判斷兩命題的關系.【詳解】若成立,則,則向量與的方向相同,且,從而,所以;若,則向量與的方向相同,且,從而,所以.所以“”為“”的充分必要條件.故選:B【點睛】本題考查充分條件和必要條件的判定,考查相等向量的判定,考查向量的模、數量積的應用.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

求出導函數,由切線斜率為4即導數為4求出切點橫坐標,再由切線方程得縱坐標后可求得.【詳解】設,由題意,∴,,,即,∴,.故答案為:1.【點睛】本題考查導數的幾何意義,函數圖象某點處的切線的斜率就是該點處導數值.本題屬于基礎題.14、【解析】

根據,則當時,,即.當時,顯然成立;當時,由,轉化為,令,用導數法求其最大值即可.【詳解】因為,又當時,,即.當時,顯然成立;當時,由等價于,令,,當時,,單調遞增,當時,,單調遞減,,則,又,得,因此的最大值為.故答案為:【點睛】本題主要考查導數在函數中的應用,還考查了轉化化歸的思想和運算求解的能力,屬于中檔題.15、【解析】試題分析:根據題意有,因為三點共線,所以有,從而有,所以的最小值是.考點:向量的運算,基本不等式.【方法點睛】該題考查的是有關應用基本不等式求最值的問題,屬于中檔題目,在解題的過程中,關鍵步驟在于對題中條件的轉化,根據三點共線,結合向量的性質可知,從而等價于已知兩個正數的整式形式和為定值,求分式形式和的最值的問題,兩式乘積,最后應用基本不等式求得結果,最后再加,得出最后的答案.16、【解析】

(1)先算出正四面體的體積,六面體的體積是正四面體體積的倍,即可得出該六面體的體積;(2)由圖形的對稱性得,小球的體積要達到最大,即球與六個面都相切時,求出球的半徑,再代入球的體積公式可得答案.【詳解】(1)每個三角形面積是,由對稱性可知該六面是由兩個正四面合成的,可求出該四面體的高為,故四面體體積為,因此該六面體體積是正四面體的2倍,所以六面體體積是;(2)由圖形的對稱性得,小球的體積要達到最大,即球與六個面都相切時,由于圖像的對稱性,內部的小球要是體積最大,就是球要和六個面相切,連接球心和五個頂點,把六面體分成了六個三棱錐設球的半徑為,所以,所以球的體積.故答案為:;.【點睛】本題考查由平面圖形折成空間幾何體、考查空間幾何體的的表面積、體積計算,考查邏輯推理能力和空間想象能力求解球的體積關鍵是判斷在什么情況下,其體積達到最大,考查運算求解能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析,有99%的把握認為經常閱讀與居民居住地有關.(2)【解析】

(1)根據題意填寫列聯表,利用公式求出,比較與6.635的大小得結論;(2)由樣本數據可得經常閱讀的人的概率是,則,根據二項分布的期望公式計算可得;【詳解】解:(1)由題意可得:城鎮(zhèn)居民農村居民合計經常閱讀10030130不經常閱讀403070合計14060200則,所以有99%的把握認為經常閱讀與居民居住地有關.(2)根據樣本估計,從該地區(qū)城鎮(zhèn)居民中隨機抽取1人,抽到經常閱讀的人的概率是,且,所以隨機變量的期望為.【點睛】本題考查獨立性檢驗的應用,考查離散型隨機變量的數學期望的計算,考查運算求解能力,屬于基礎題.18、(1)證明見解析;(2).【解析】試題分析:由于圖形是正四棱錐,因此設AC、BD交點為O,則以OA為x軸正方向,以OB為y軸正方向,OP為z軸正方向建立空間直角坐標系,可用空間向量法解決問題.(1)只要證明=0即可證明垂直;(2)設=λ,得M(λ,0,1-λ),然后求出平面MBD的法向量,而平面ABD的法向量為,利用法向量夾角與二面角相等或互補可求得.試題解析:(1)連結AC、BD交于點O,以OA為x軸正方向,以OB為y軸正方向,OP為z軸正方向建立空間直角坐標系.因為PA=AB=,則A(1,0,0),B(0,1,0),D(0,-1,0),P(0,0,1).由=,得N,由=,得M,所以,=(-1,-1,0).因為=0,所以MN⊥AD(2)解:因為M在PA上,可設=λ,得M(λ,0,1-λ).所以=(λ,-1,1-λ),=(0,-2,0).設平面MBD的法向量=(x,y,z),由,得其中一組解為x=λ-1,y=0,z=λ,所以可?。?λ-1,0,λ).因為平面ABD的法向量為=(0,0,1),所以cos=,即=,解得λ=,從而M,N,所以MN==.考點:用空間向量法證垂直、求二面角.19、(Ⅰ);(Ⅱ)3.【解析】

(Ⅰ)先求導,得,已知導函數單調遞增,又在區(qū)間上單調遞增,故,令,求得,討論得,而,故,進而得解;(Ⅱ)可通過必要性探路,當時,由知,又由于,則,當,,結合零點存在定理可判斷必存在使得,得,,化簡得,再由二次函數性質即可求證;【詳解】(Ⅰ)的定義域為.易知單調遞增,由題意有.令,則.令得.所以當時,單調遞增;當時,單調遞減.所以,而又有,因此,所以.(Ⅱ)由知,又由于,則.下面證明符合條件.若.所以.易知單調遞增,而,,因此必存在使得,即.且當時,單調遞減;當時,,單調遞增;則.綜上,的最大值為3.【點睛】本題考查導數的計算,利用導數研究函數的增減性和最值,屬于中檔題20、(1)(2)當時,年利潤最大.【解析】

(1)方法一:令,先求得關于的回歸直線方程,由此求得關于的回歸直線方程.方法二:根據回歸直線方程計算公式,計算出回歸直線方程.方法一的好處在計算的數值較小.(2)求得w的表達式,根據二次函數的性質作出預測.【詳解】(1)方法一:取,則得與的數據關系如下12

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論