安徽省六安一中、舒城中學(xué)2024屆下學(xué)期高三數(shù)學(xué)試題4月考考試試卷_第1頁(yè)
安徽省六安一中、舒城中學(xué)2024屆下學(xué)期高三數(shù)學(xué)試題4月考考試試卷_第2頁(yè)
安徽省六安一中、舒城中學(xué)2024屆下學(xué)期高三數(shù)學(xué)試題4月考考試試卷_第3頁(yè)
安徽省六安一中、舒城中學(xué)2024屆下學(xué)期高三數(shù)學(xué)試題4月考考試試卷_第4頁(yè)
安徽省六安一中、舒城中學(xué)2024屆下學(xué)期高三數(shù)學(xué)試題4月考考試試卷_第5頁(yè)
已閱讀5頁(yè),還剩15頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

安徽省六安一中、舒城中學(xué)2024屆下學(xué)期高三數(shù)學(xué)試題4月考考試試卷注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫(xiě)在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對(duì)應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)。回答非選擇題時(shí),將答案寫(xiě)在答題卡上,寫(xiě)在本試卷上無(wú)效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知等差數(shù)列滿足,公差,且成等比數(shù)列,則A.1 B.2 C.3 D.42.若函數(shù)的圖象如圖所示,則的解析式可能是()A. B. C. D.3.甲乙兩人有三個(gè)不同的學(xué)習(xí)小組,,可以參加,若每人必須參加并且僅能參加一個(gè)學(xué)習(xí)小組,則兩人參加同一個(gè)小組的概率為()A.B.C.D.4.已知雙曲線的焦距為,過(guò)左焦點(diǎn)作斜率為1的直線交雙曲線的右支于點(diǎn),若線段的中點(diǎn)在圓上,則該雙曲線的離心率為()A. B. C. D.5.雙曲線的漸近線方程是()A. B. C. D.6.已知拋物線,過(guò)拋物線上兩點(diǎn)分別作拋物線的兩條切線為兩切線的交點(diǎn)為坐標(biāo)原點(diǎn)若,則直線與的斜率之積為()A. B. C. D.7.已知,則()A. B. C. D.8.新聞出版業(yè)不斷推進(jìn)供給側(cè)結(jié)構(gòu)性改革,深入推動(dòng)優(yōu)化升級(jí)和融合發(fā)展,持續(xù)提高優(yōu)質(zhì)出口產(chǎn)品供給,實(shí)現(xiàn)了行業(yè)的良性發(fā)展.下面是2012年至2016年我國(guó)新聞出版業(yè)和數(shù)字出版業(yè)營(yíng)收增長(zhǎng)情況,則下列說(shuō)法錯(cuò)誤的是()A.2012年至2016年我國(guó)新聞出版業(yè)和數(shù)字出版業(yè)營(yíng)收均逐年增加B.2016年我國(guó)數(shù)字出版業(yè)營(yíng)收超過(guò)2012年我國(guó)數(shù)字出版業(yè)營(yíng)收的2倍C.2016年我國(guó)新聞出版業(yè)營(yíng)收超過(guò)2012年我國(guó)新聞出版業(yè)營(yíng)收的1.5倍D.2016年我國(guó)數(shù)字出版營(yíng)收占新聞出版營(yíng)收的比例未超過(guò)三分之一9.已知向量與的夾角為,定義為與的“向量積”,且是一個(gè)向量,它的長(zhǎng)度,若,,則()A. B.C.6 D.10.已知集合M={y|y=2x,x>0},N={x|y=lg(2x-xA.(1,+∞) B.(1,2) C.[2,+∞) D.[1,+∞)11.函數(shù)()的圖像可以是()A. B.C. D.12.若x,y滿足約束條件則z=的取值范圍為()A.[] B.[,3] C.[,2] D.[,2]二、填空題:本題共4小題,每小題5分,共20分。13.將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,則函數(shù)的最大值為_(kāi)_____.14.已知兩點(diǎn),,若直線上存在點(diǎn)滿足,則實(shí)數(shù)滿足的取值范圍是__________.15.的展開(kāi)式中的系數(shù)為_(kāi)_________(用具體數(shù)據(jù)作答).16.已知圓柱的上下底面的中心分別為,過(guò)直線的平面截該圓柱所得的截面是面積為36的正方形,則該圓柱的體積為_(kāi)___三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17.(12分)在四棱錐中,底面為直角梯形,,面.(1)在線段上是否存在點(diǎn),使面,說(shuō)明理由;(2)求二面角的余弦值.18.(12分)如圖,直角三角形所在的平面與半圓弧所在平面相交于,,,分別為,的中點(diǎn),是上異于,的點(diǎn),.(1)證明:平面平面;(2)若點(diǎn)為半圓弧上的一個(gè)三等分點(diǎn)(靠近點(diǎn))求二面角的余弦值.19.(12分)在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.(Ⅰ)求直線的直角坐標(biāo)方程與曲線的普通方程;(Ⅱ)已知點(diǎn)設(shè)直線與曲線相交于兩點(diǎn),求的值.20.(12分)在四棱椎中,四邊形為菱形,,,,,,分別為,中點(diǎn)..(1)求證:;(2)求平面與平面所成銳二面角的余弦值.21.(12分)已知在等比數(shù)列中,.(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列前項(xiàng)的和.22.(10分)如圖,在四棱錐中,底面為菱形,為正三角形,平面平面分別是的中點(diǎn).(1)證明:平面(2)若,求二面角的余弦值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解題分析】

先用公差表示出,結(jié)合等比數(shù)列求出.【題目詳解】,因?yàn)槌傻缺葦?shù)列,所以,解得.【題目點(diǎn)撥】本題主要考查等差數(shù)列的通項(xiàng)公式.屬于簡(jiǎn)單題,化歸基本量,尋求等量關(guān)系是求解的關(guān)鍵.2、A【解題分析】

由函數(shù)性質(zhì),結(jié)合特殊值驗(yàn)證,通過(guò)排除法求得結(jié)果.【題目詳解】對(duì)于選項(xiàng)B,為奇函數(shù)可判斷B錯(cuò)誤;對(duì)于選項(xiàng)C,當(dāng)時(shí),,可判斷C錯(cuò)誤;對(duì)于選項(xiàng)D,,可知函數(shù)在第一象限的圖象無(wú)增區(qū)間,故D錯(cuò)誤;故選:A.【題目點(diǎn)撥】本題考查已知函數(shù)的圖象判斷解析式問(wèn)題,通過(guò)函數(shù)性質(zhì)及特殊值利用排除法是解決本題的關(guān)鍵,難度一般.3、A【解題分析】依題意,基本事件的總數(shù)有種,兩個(gè)人參加同一個(gè)小組,方法數(shù)有種,故概率為.4、C【解題分析】

設(shè)線段的中點(diǎn)為,判斷出點(diǎn)的位置,結(jié)合雙曲線的定義,求得雙曲線的離心率.【題目詳解】設(shè)線段的中點(diǎn)為,由于直線的斜率是,而圓,所以.由于是線段的中點(diǎn),所以,而,根據(jù)雙曲線的定義可知,即,即.故選:C【題目點(diǎn)撥】本小題主要考查雙曲線的定義和離心率的求法,考查直線和圓的位置關(guān)系,考查數(shù)形結(jié)合的數(shù)學(xué)思想方法,屬于中檔題.5、C【解題分析】

根據(jù)雙曲線的標(biāo)準(zhǔn)方程即可得出該雙曲線的漸近線方程.【題目詳解】由題意可知,雙曲線的漸近線方程是.故選:C.【題目點(diǎn)撥】本題考查雙曲線的漸近線方程的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意雙曲線的簡(jiǎn)單性質(zhì)的合理運(yùn)用.6、A【解題分析】

設(shè)出A,B的坐標(biāo),利用導(dǎo)數(shù)求出過(guò)A,B的切線的斜率,結(jié)合,可得x1x2=﹣1.再寫(xiě)出OA,OB所在直線的斜率,作積得答案.【題目詳解】解:設(shè)A(),B(),由拋物線C:x2=1y,得,則y′.∴,,由,可得,即x1x2=﹣1.又,,∴.故選:A.點(diǎn)睛:(1)本題主要考查拋物線的簡(jiǎn)單幾何性質(zhì),考查直線和拋物線的位置關(guān)系,意在考查學(xué)生對(duì)這些基礎(chǔ)知識(shí)的掌握能力和分析推理能力.(2)解答本題的關(guān)鍵是解題的思路,由于與切線有關(guān),所以一般先設(shè)切點(diǎn),先設(shè)A,B,,再求切線PA,PB方程,求點(diǎn)P坐標(biāo),再根據(jù)得到最后求直線與的斜率之積.如果先設(shè)點(diǎn)P的坐標(biāo),計(jì)算量就大一些.7、B【解題分析】

利用誘導(dǎo)公式以及同角三角函數(shù)基本關(guān)系式化簡(jiǎn)求解即可.【題目詳解】,本題正確選項(xiàng):【題目點(diǎn)撥】本題考查誘導(dǎo)公式的應(yīng)用,同角三角函數(shù)基本關(guān)系式的應(yīng)用,考查計(jì)算能力.8、C【解題分析】

通過(guò)圖表所給數(shù)據(jù),逐個(gè)選項(xiàng)驗(yàn)證.【題目詳解】根據(jù)圖示數(shù)據(jù)可知選項(xiàng)A正確;對(duì)于選項(xiàng)B:,正確;對(duì)于選項(xiàng)C:,故C不正確;對(duì)于選項(xiàng)D:,正確.選C.【題目點(diǎn)撥】本題主要考查柱狀圖是識(shí)別和數(shù)據(jù)分析,題目較為簡(jiǎn)單.9、D【解題分析】

先根據(jù)向量坐標(biāo)運(yùn)算求出和,進(jìn)而求出,代入題中給的定義即可求解.【題目詳解】由題意,則,,得,由定義知,故選:D.【題目點(diǎn)撥】此題考查向量的坐標(biāo)運(yùn)算,引入新定義,屬于簡(jiǎn)單題目.10、B【解題分析】M=y|y=N==x|∴M∩N=(1,2).故選B.11、B【解題分析】

根據(jù),可排除,然后采用導(dǎo)數(shù),判斷原函數(shù)的單調(diào)性,可得結(jié)果.【題目詳解】由題可知:,所以當(dāng)時(shí),,又,令,則令,則所以函數(shù)在單調(diào)遞減在單調(diào)遞增,故選:B【題目點(diǎn)撥】本題考查函數(shù)的圖像,可從以下指標(biāo)進(jìn)行觀察:(1)定義域;(2)奇偶性;(3)特殊值;(4)單調(diào)性;(5)值域,屬基礎(chǔ)題.12、D【解題分析】

由題意作出可行域,轉(zhuǎn)化目標(biāo)函數(shù)為連接點(diǎn)和可行域內(nèi)的點(diǎn)的直線斜率的倒數(shù),數(shù)形結(jié)合即可得解.【題目詳解】由題意作出可行域,如圖,目標(biāo)函數(shù)可表示連接點(diǎn)和可行域內(nèi)的點(diǎn)的直線斜率的倒數(shù),由圖可知,直線的斜率最小,直線的斜率最大,由可得,由可得,所以,,所以.故選:D.【題目點(diǎn)撥】本題考查了非線性規(guī)劃的應(yīng)用,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解題分析】

由三角函數(shù)圖象相位變換后表達(dá)函數(shù)解析式,再利用三角恒等變換與輔助角公式整理的表達(dá)式,進(jìn)而由三角函數(shù)值域求得最大值.【題目詳解】將函數(shù)的圖象向右平移個(gè)單位長(zhǎng)度后得到函數(shù)的圖象,則所以,當(dāng)函數(shù)最大,最大值為故答案為:【題目點(diǎn)撥】本題考查表示三角函數(shù)圖象平移后圖象的解析式,還考查了利用三角恒等變換化簡(jiǎn)函數(shù)式并求最值,屬于簡(jiǎn)單題.14、【解題分析】

問(wèn)題轉(zhuǎn)化為求直線與圓有公共點(diǎn)時(shí),的取值范圍,利用數(shù)形結(jié)合思想能求出結(jié)果.【題目詳解】解:直線,點(diǎn),,直線上存在點(diǎn)滿足,的軌跡方程是.如圖,直線與圓有公共點(diǎn),圓心到直線的距離:,解得.實(shí)數(shù)的取值范圍為.故答案為:.【題目點(diǎn)撥】本題主要考查直線方程、圓、點(diǎn)到直線的距離公式等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,屬于中檔題.15、【解題分析】

利用二項(xiàng)展開(kāi)式的通項(xiàng)公式可求的系數(shù).【題目詳解】的展開(kāi)式的通項(xiàng)公式為,令,故,故的系數(shù)為.故答案為:.【題目點(diǎn)撥】本題考查二項(xiàng)展開(kāi)式中指定項(xiàng)的系數(shù),注意利用通項(xiàng)公式來(lái)計(jì)算,本題屬于容易題.16、【解題分析】

由軸截面是正方形,易求底面半徑和高,則圓柱的體積易求.【題目詳解】解:因?yàn)檩S截面是正方形,且面積是36,所以圓柱的底面直徑和高都是6故答案為:【題目點(diǎn)撥】考查圓柱的軸截面和其體積的求法,是基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫(xiě)出文字說(shuō)明、證明過(guò)程或演算步驟。17、(1)存在;詳見(jiàn)解析(2)【解題分析】

(1)利用面面平行的性質(zhì)定理可得,為上靠近點(diǎn)的三等分點(diǎn),中點(diǎn),證明平面平面即得;(2)過(guò)作交于,可得兩兩垂直,以分別為軸建立空間直角坐標(biāo)系,求出長(zhǎng),寫(xiě)出各點(diǎn)坐標(biāo),用向量法求二面角.【題目詳解】解:(1)當(dāng)為上靠近點(diǎn)的三等分點(diǎn)時(shí),滿足面.證明如下,取中點(diǎn),連結(jié).即易得所以面面,即面.(2)過(guò)作交于面,兩兩垂直,以分別為軸建立空間直角坐標(biāo)系,如圖,設(shè)面法向量,則,即取同理可得面的法向量綜上可知銳二面角的余弦值為.【題目點(diǎn)撥】本題考查立體幾何中的存探索性命題,考查用空間向量法求二面角.線面平行問(wèn)題可通過(guò)面面平行解決,一定要掌握:立體幾何中線線平行、線面平行、面面平行是相互轉(zhuǎn)化、相互依存的.求空間角一般是建立空間直角坐標(biāo)系,用空間向量法求空間角.18、(1)詳見(jiàn)解析;(2).【解題分析】

(1)由直徑所對(duì)的圓周角為,可知,通過(guò)計(jì)算,利用勾股定理的逆定理可以判斷出為直角三角形,所以有.由已知可以證明出,這樣利用線面垂直的判定定理可以證明平面,利用面面垂直的判定定理可以證明出平面平面;(2)以為坐標(biāo)原點(diǎn),分別以垂直于平面向上的方向、向量所在方向作為軸、軸、軸的正方向,建立如圖所示的空間直角坐標(biāo)系,求出相應(yīng)點(diǎn)的坐標(biāo),求出平面的一個(gè)法向量和平面的法向量,利用空間向量數(shù)量積運(yùn)算公式,可以求出二面角的余弦值.【題目詳解】解:(1)證明:因?yàn)榘雸A弧上的一點(diǎn),所以.在中,分別為的中點(diǎn),所以,且.于是在中,,所以為直角三角形,且.因?yàn)椋?所以.因?yàn)?,,,所以平?又平面,所以平面平面.(2)由已知,以為坐標(biāo)原點(diǎn),分別以垂直于、向量所在方向作為軸、軸、軸的正方向,建立如圖所示的空間直角坐標(biāo)系,則,,,,,,.設(shè)平面的一個(gè)法向量為,則即,取,得.設(shè)平面的法向量,則即,取,得.所以,又二面角為銳角,所以二面角的余弦值為.【題目點(diǎn)撥】本題考查了利用線面垂直判定面面垂直、利用空間向量數(shù)量積求二面角的余弦值問(wèn)題.19、(Ⅰ)直線的直角坐標(biāo)方程為;曲線的普通方程為;(Ⅱ).【解題分析】

(I)利用參數(shù)方程、普通方程、極坐標(biāo)方程間的互化公式即可;(II)將直線參數(shù)方程代入拋物線的普通方程,可得,而根據(jù)直線參數(shù)方程的幾何意義,知,代入即可解決.【題目詳解】由可得直線的直角坐標(biāo)方程為由曲線的參數(shù)方程,消去參數(shù)可得曲線的普通方程為.易知點(diǎn)在直線上,直線的參數(shù)方程為(為參數(shù)).將直線的參數(shù)方程代入曲線的普通方程,并整理得.設(shè)是方程的兩根,則有.【題目點(diǎn)撥】本題考查參數(shù)方程、普通方程、極坐標(biāo)方程間的互化,直線參數(shù)方程的幾何意義,是一道容易題.20、(1)證明見(jiàn)解析;(2).【解題分析】

(1)證明,得到平面,得到證明.(2)以點(diǎn)為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,平面的一個(gè)法向量為,平面的一個(gè)法向量為,計(jì)算夾角得到答案.【題目詳解】(1)因?yàn)樗倪呅问橇庑?,且,所以是等邊三角形,又因?yàn)槭堑闹悬c(diǎn),所以,又因?yàn)?,,所以,又,,,所以,又,,所以平面,所以,又因?yàn)槭橇庑危?,所以,又,所以平面,所?(2)由題意結(jié)合菱形的性質(zhì)易知,,,以點(diǎn)為坐標(biāo)原點(diǎn),建立如圖所示的空間直角坐標(biāo)系,則,,,,,設(shè)平面的一個(gè)法向量為,則:,據(jù)此可得平面的一個(gè)法向量為,設(shè)平面的一個(gè)法向量為,則:,據(jù)此可得平面的一個(gè)法向量為,,平面與平面所成銳二面角的余弦值.【題目點(diǎn)撥】本題考查了線線垂直,二面角,意在考查學(xué)生的計(jì)算能力和空間想象能力.21、(1)(2)【解題分析】

(1)由基本量法,求出公比后可得通項(xiàng)公式;(2)求出,用裂項(xiàng)相消法求和.【題目詳解】解:(1)設(shè)等比數(shù)列的公比為又因?yàn)?,所以解得(舍)或所以,即?)據(jù)(1)求解知,,所以所以【題目點(diǎn)撥】本題考查求等比數(shù)列的通項(xiàng)公式,考查裂項(xiàng)相消法求和.解題方法是基本量法.基本量法是解決等差數(shù)列和等比數(shù)列的基本方法,務(wù)必掌握.22、(1)詳見(jiàn)解析;(2).【解題分析】

(1)連接,由菱形的性質(zhì)以及中位線,得,由平面平面,且交線,得平面,故而,最后由線面垂直的判定得結(jié)論.(2)以為原點(diǎn)建平面直角坐標(biāo)系,求出平面平與平面的法向量,,最后求得二面角的

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論