2023年湖南省益陽市安化重點(diǎn)中學(xué)聯(lián)考高考數(shù)學(xué)模擬試卷_第1頁
2023年湖南省益陽市安化重點(diǎn)中學(xué)聯(lián)考高考數(shù)學(xué)模擬試卷_第2頁
2023年湖南省益陽市安化重點(diǎn)中學(xué)聯(lián)考高考數(shù)學(xué)模擬試卷_第3頁
2023年湖南省益陽市安化重點(diǎn)中學(xué)聯(lián)考高考數(shù)學(xué)模擬試卷_第4頁
2023年湖南省益陽市安化重點(diǎn)中學(xué)聯(lián)考高考數(shù)學(xué)模擬試卷_第5頁
已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2023年湖南省益陽市安化重點(diǎn)中學(xué)聯(lián)考高考數(shù)學(xué)模擬試卷

一、單選題(本大題共8小題,共40.0分。在每小題列出的選項(xiàng)中,選出符合題目的一項(xiàng))

1.已知集合。={-101,2,3},集合P={0,1,2},集合Q={-l,0},則(QP)UQ=()

A.{3}B.{-1}C.{-1,1,2,3}D.{-1,0,3}

2.設(shè)0<a<l,則“l(fā)ogab>l”是“b<a”的()

A.必要不充分條件B.充分不必要條件

C.充要條件D.既不充分也不必要條件

3.若一,。號(hào)_=cos(7r+a),貝ijtan?-2a)=()

coscr+sina''4

A.—7B.7C.-;D.;

4.已知{an}是等比數(shù)列,g=2,a5=p4-a2a34-4-anaM1=()

A.16(1-4-n)B,16(1-2-n)C.y(l-4-n)D.y(l-2-n)

5.在四邊形ABC。中,若四=一而,且|荏一而|=|南+而I,則四邊形48。。為()

A.平行四邊形B.菱形C.矩形D.正方形

6.我國古代仇章算術(shù)沙里,記載了一個(gè)“商功”的例子:今有芻童,下廣二丈,袤三丈,

上廣三丈,袤四丈,高三丈.問積幾何?其意思是:今有上下底面皆為長方形的草垛(如右圖

所示),下底寬2丈,長3丈;上底寬3丈,長4丈;高3丈.問它的體積是多少?該書提供的算

法是:上底長的2倍與下底長的和與上底寬相乘,同樣下底長的2倍與上底長的和與下底寬相

乘,將兩次運(yùn)算結(jié)果相加,再乘以高,最后除以6.則這個(gè)問題中的芻童的體積為()

A.13.25立方丈B.26.5立方丈C.53立方丈D.106立方丈

7.過雙曲蹲一*l(a>b>0)的右焦點(diǎn)尸2的直線在第一、第四象限交兩漸近線分別于P,

Q兩點(diǎn),且NOPQ=90。,。為坐標(biāo)原點(diǎn),若A0PQ內(nèi)切圓的半徑為小則該雙曲線的離心率為

A"B.yC.<10D.三

8.已知函數(shù)f(%),g(%)的定義域均為R,且/(%)+g(2-%)=5,5(%)-/(%-4)=7,若y=

g(%)的圖像關(guān)于直線%=2對(duì)稱,g(2)=4,則£蹌"(?=()

A.—21B.-22C,-23D.—24

二、多選題(本大題共4小題,共20.0分。在每小題有多項(xiàng)符合題目要求)

9.將函數(shù)/(x)=Ccos(2x+今-1的圖象向左平移百個(gè)單位長度,再向上平移1個(gè)單位長度,

得到函數(shù)g(x)的圖象,則函數(shù)g(x)具有以下哪些性質(zhì)()

A.最大值為小?,圖象關(guān)于直線%=*對(duì)稱

B.圖象關(guān)于y軸對(duì)稱

C.最小正周期為兀

D.圖象關(guān)于點(diǎn)6,0)成中心對(duì)稱

22

10.已知直線&(1+a)x+y+2Q=0(a€R)與圓C:x+(y—2)=4,貝ij()

A.直線,必過定點(diǎn)

B.當(dāng)a=l時(shí),|被圓C截得的弦長為警

C.直線I與圓C可能相切

D.直線2與圓C不可能相離

11.已知函數(shù)f(x)=3,下列關(guān)于/(%)的四個(gè)命題,其中真命題有()

A.函數(shù)/'(x)在[0,1]上是增函數(shù)

B.函數(shù)/'(X)的最小值為0

C.如果xe[0,t]時(shí),f(x)max=則t的最小值為2

D.函數(shù)有2個(gè)零點(diǎn)

12.如圖,四邊形中=BC=4C=2,。4=DC=一

將四邊形沿對(duì)角線4c折起,使點(diǎn)。不在平面4BC內(nèi),則在翻折過程/\

中,以下結(jié)論正確的是()\/\

AB

A.兩條異面直線4B與CD所成角的范圍是[工,月

B.P為線段CD上一點(diǎn)(包括端點(diǎn)),當(dāng)CD1AB時(shí),乙4PB

C.三棱錐D-ABC的體積最大值為?

D.當(dāng)二面角。一力C—B的大小為看時(shí),三棱錐。―ABC的外接球表面積為等

三、填空題(本大題共4小題,共20.0分)

13.在復(fù)平面內(nèi),復(fù)數(shù)z=i(a+i)對(duì)應(yīng)的點(diǎn)在直線x+y=0上,則實(shí)數(shù)a=.

14.在(3乂-3尸的展開式中,各項(xiàng)系數(shù)和與二項(xiàng)式系數(shù)和之和為128,則展開式中的常數(shù)

VX

項(xiàng)為.

15.已知又為等差數(shù)列{即}的前n項(xiàng)和,若S12<0,。5+&7>0,則當(dāng)又取最大值時(shí),n的值

為一.

16.已知橢圓的與雙曲線C2有共同的焦點(diǎn)尸1、F2,橢圓G的離心率為eI,雙曲線Cz的離心率

為02,點(diǎn)P為橢圓G與雙曲線C2在第一象限的交點(diǎn),且4&。F2=今則;+;的最大值為

四、解答題(本大題共6小題,共70.0分。解答應(yīng)寫出文字說明,證明過程或演算步驟)

17.(本小題10.0分)

n+1

已知數(shù)列{即}中,Oi=1,a2=3,an+2+2an-2=3an+1(nGN*').

(1)設(shè)垢=&圻&,求證:{4}是等差數(shù)列;

(2)求{%}的通項(xiàng).

18.(本小題12.0分)

在A/IBC中,角4B,C的對(duì)邊分別是a,b,c,已知asinA+csinC=(q,asinC+b)sinB.

⑴求B;

(2)若力C邊上的中線BD的長為2,求小ABC面積的最大值.

19.(本小題12.0分)

某網(wǎng)站用“10分制”調(diào)查一社區(qū)人們的幸福度.現(xiàn)從調(diào)查人群中隨機(jī)抽取16名,莖葉圖記錄了

他們的幸福度分?jǐn)?shù)(以小數(shù)點(diǎn)前的一位數(shù)字為莖,小數(shù)點(diǎn)后的一位數(shù)字為葉):

(1)指出這組數(shù)據(jù)的眾數(shù)和中位數(shù);

(2)若幸福度不低于9.2,則稱該人的幸福度為“極幸?!?求從這16人中隨機(jī)選取3人,至多有

1人是“極幸福”的概率;

(3)以這16人的樣本數(shù)據(jù)來估計(jì)整個(gè)社區(qū)的總體數(shù)據(jù),若從該社區(qū)(人數(shù)很多)任選3人,記f表

示抽到“極幸福”的人數(shù),求f的分布列及數(shù)學(xué)期望.

幸福度

730

86666778899

97655

20.(本小題12.0分)

如圖1,在矩形4BCC中,AB=2,BC=4,E為AC的中點(diǎn),。為BE的中點(diǎn).將AABE沿BE折

起到ABE,使得平面4'BE,平面BCDE(如圖2).

(I)求證:A'O1CD-.

(U)求直線4c與平面4DE所成角的正弦值;

(DI)在線段4C上是否存在點(diǎn)P,使得OP〃平面4DE?若存在,求出”的值;若不存在,請(qǐng)

AC

說明理由.

21.(本小題12.0分)

已知函數(shù)/(x)=xlnx—ax2.

(I)若/Q)的圖像恒在》軸下方,求實(shí)數(shù)a的取值范圍;

(□)若函數(shù)/(乃有兩個(gè)零點(diǎn)771、n,且1<;W2,求7nn的最大值.

22.(本小題12.0分)

過雙曲線r:,一,=l(a>0,b>0)左焦點(diǎn)&的動(dòng)直線I與「的左支交于4,B兩點(diǎn),設(shè)廠的右

焦點(diǎn)為

(1)若三角形力NF2可以是邊長為4的正三角形,求此時(shí)「的標(biāo)準(zhǔn)方程;

(2)若存在直線I,使得AF2IBF2,求「離心率的取值范圍.

答案和解析

1.【答案】D

【解析】解:?.?集合U={-1,0,123},集合P=[0,1,2},集合Q={-l,0},

???CuP={T,3},

則(QP)UQ=[-1,0,3).

故選:D.

推導(dǎo)出QP={-1,3},由此能求出(G/P)UQ.

本題考查補(bǔ)集、并集的求法,考查補(bǔ)集、并集定義等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,是基礎(chǔ)題.

2.【答案】B

【解析】

【分析】

本題主要考查充分條件和必要條件的判斷,根據(jù)充分條件和必要條件的定義是解決本題的關(guān)鍵.先

找出logab>1的等價(jià)條件,然后根據(jù)充分條件和必要條件的定義分別進(jìn)行判斷即可.

【解答】

解:?-,0<a<1,logaZ?>1=logaa,

0<b<a,

,-?0<b<ab<a,

b<a推不出i0<b<a,

.,-0<b<a是b<a充分不必要條件,

即“l(fā)ogab>1”是“b<a”的充分不必要條件.

故選:B.

3.【答案】A

【解析】

【分析】

由誘導(dǎo)公式,二倍角的余弦公式,同角三角函數(shù)基本關(guān)系式化簡(jiǎn)已知等式可得tana的值,根據(jù)二

倍角的正切公式可求tan2a的值,進(jìn)而利用兩角差的正切公式即可求解.

本題主要考查了誘導(dǎo)公式,二倍角的余弦公式,同角三角函數(shù)基本關(guān)系式,二倍角的正切公式,

兩角差的正切公式在三角函數(shù)求值中的應(yīng)用,考查了轉(zhuǎn)化思想,屬于基礎(chǔ)題.

【解答】

解:因?yàn)榻ūP=cos(兀+a),

所以

cos2a-sin2a_(cosa+sina)(cosa-sina')=cosa—sina=—cosa,

cosa+sinacosa+sina

所以tana=^=2,tan2a=匿高4

3

則tan/-2a)l—tan2a

l+tan2a

故選:A.

4.【答案】C

【解析】

【分析】

本題主要考查等比數(shù)列的證明以及求和問題,屬于中檔題.

先根據(jù)。2=2,曲=3求出公比q,再判斷出{anan+J為等比數(shù)列,根據(jù)等比數(shù)列求和公式得到

答案.

【解答】

解:,?'{斯}是等比數(shù)列,=2,a-aq3=2-q3=p

524

1

?**q=/,a】=4,=4x2=8,

-.■^n±2=2

anan+i?4

數(shù)列{a/n+i}是以8為首項(xiàng),上為公比的等比數(shù)列,

?0?+Q3Q4+,?,+Q72Q71+1

1-4

故選:C.

5.【答案】C

【解析】解:由荏=一而,可得|屈|=|而|且荏與反方向相同,可得四邊形4BCD是平行四

邊形,

又由I荏-而I=I荏+同I,可得I而|=|北|,即四邊形對(duì)角線相等,

所以四邊形ABCD是矩形.

故選:C.

由而=-而,可得四邊形ABCD是平行四邊形,又由|而-而|=\AB+AD\<可得四邊形4BCD

是矩形.

本題考查了向量在幾何中的應(yīng)用,考查了運(yùn)算能力和數(shù)形結(jié)合的能力,屬于基礎(chǔ)題.

6.【答案】B

【解析】

【分析】

本題考查棱柱、棱錐及棱臺(tái)體積的求法,是基礎(chǔ)的計(jì)算題.

由已知結(jié)合題目給出的體積公式求解.

【解答】

解:由題意,下底寬2丈,長3丈;上底寬3丈,長4丈;高3丈.

則芻童的體積為U=ix[(2x4+3)x3+(2x3+4)x2]x3=26.5丈.

故選:B.

7.【答案】B

【解析】解:如圖,設(shè)△OPQ的內(nèi)切圓圓心為M,則M在x軸上,過點(diǎn)M分別作MN10P于N,MT1PQ

由F2P,0P得,四邊形MTPN為正方形,

bebe

焦點(diǎn)尸2(。,0)到漸近線y=的距離|F2Pl=J;(b)2=件=b,

2222

又IOF2I=c,\0P\=yj\OF2\-\F2P\=Vc-b=a,

...|NP|=|MN|=飆|N0|=與,,?.解=5=tanaNOM=篇=莽=

?DI'-**Iu1,丫。1—Q4

.??離心率e=Jl+(:)2=J1+(|)2=好.

故選:B.

設(shè)AOPQ的內(nèi)切圓圓心為M,過點(diǎn)M分別作MN_LOP于N,MTJ.PQ于T,易知四邊形MTPN為正

方形,所以焦點(diǎn)F2(c,0)到漸近線y=gx的距離|F2Pl=從又|。?21=以所以|OP|=a,而|NP|=

\MN\=\a,因此|NO|=*于是儒=,=儒=1最后結(jié)合離心率6=/1+合2.

本題考查雙曲線的性質(zhì),對(duì)學(xué)生的幾何素養(yǎng)知識(shí)積累有一定的要求,考查學(xué)生的數(shù)形結(jié)合思想和

運(yùn)算能力,屬于中檔題.

8.【答案】D

【解析】解:y=g(x)的圖像關(guān)于直線x=2對(duì)稱,則g(2-x)=g(2+%),

/(x)+g(2-x)=5,/(-X)+g(2+x)=5,二/(-x)=/(%),故/(x)為偶函數(shù),

???g(2)=4,/(0)+g(2)=5,得f(0)=1.由g(x)-f(x-4)=7,得g(2-x)=/(-x-2)+7,

代入/(x)+g(2-x)=5,得/(>)+/(-%-2)=-2,故f(x)關(guān)于點(diǎn)(-1,-1)中心對(duì)稱,

?-./(1)=/(-1)=-1,由+f(-*-2)=-2,/(-%)=/(%),得f(x)+f(x+2)=-2,

???f(x+2)+/(x+4)=-2,故/(x+4)=f(x),/(x)周期為4,

由/(0)+/(2)=-2,得/(2)=-3,又/'(3)=/(—1)=〃1)=-1,

所以2蹌"(k)=6/(1)+6/(2)+5/(3)+5/(4)=11x(-1)+5X1+6x(-3)=-24,

故選:D.

由y=9(%)的對(duì)稱性可得人乃為偶函數(shù),進(jìn)而得到f(x)關(guān)于點(diǎn)中心對(duì)稱,所以/(I)=

/(-1)=—1,再結(jié)合f(x)的周期為4,即可求出結(jié)果.

本題主要考查了函數(shù)的奇偶性、對(duì)稱性和周期性,屬于中檔題.

9.【答案】BCD

【解析】解:函數(shù)/。)=/?3(2%+》一1的圖象向左平移泠單位,得到g(x)=—Ccos2x—

1+1=-L5cos2x的圖象;

對(duì)于4函數(shù)的最大值為,與,函數(shù)的對(duì)稱軸不是化=一或故A錯(cuò)誤;

對(duì)于B:由于x=0,整理得g(0)=-「,故B正確;

對(duì)于C:函數(shù)的最小正周期為兀,故C正確;

對(duì)于D:當(dāng)時(shí),g6)=o,故函數(shù)的圖象關(guān)于第。)對(duì)稱,故。正確.

故選:BCD.

直接利用函數(shù)的關(guān)系式的平移變換和

本題考查的知識(shí)要點(diǎn):三角函數(shù)的關(guān)系式的變換,余弦型函數(shù)性質(zhì)的應(yīng)用,主要考查學(xué)生的運(yùn)算

能力和數(shù)學(xué)思維能力,屬于基礎(chǔ)題.

10.【答案】ABD

【解析】解:直線&(1+a)x+y+2a=0(a6R)即久+y+a(%4-2)=0,可知直線系恒過(-2,2)

點(diǎn),所以A正確.

當(dāng)a=l時(shí),直線八2x+y+2=0,圓的圓心到直線的距離為:d=哼言=寅,

圓的半徑為2,,被圓C截得的弦長為:2I4-普=歲,所以8正確;

755

直線八(1+a)x+y+2a=0(a€R)與圓C:x2+(y—2)2=4,

|2+2a|_C

圓的圓心到直線的距離為:2<2,所以直線與圓相交,所以C錯(cuò)誤;。正確.

J"(1+a)、+1

故選:ABD.

利用直線系方程求解定點(diǎn)坐標(biāo)判斷4求解弦長判斷B;利用直線與圓的位置關(guān)系判斷C、D即可.

本題考查直線與圓的位置關(guān)系的綜合應(yīng)用,是中檔題.

11.【答案】ABC

【解析】解:f'(x)=當(dāng)x<?;?>2時(shí),f'(x)<0,當(dāng)0<x<2時(shí),f<x)>0,故/'(x)在

(-co,0),(2,+8)上遞減,在(0,2)上遞增,

故4正確;

當(dāng)x=0時(shí),/(x)=0,XK0時(shí),/(%)>0,故B正確;

當(dāng)tG(0,2)時(shí),/(%)在[0,可上遞增,f(x)</(t)</(2)=3,不合題意;當(dāng)£=2時(shí),/(X)</(2)=

白,符合,當(dāng)t>2時(shí),/(x)在[0,2)上遞增,在(2,t]上遞減,所以〃>)W/(2)=盤,綜上t22時(shí),

/'(%)2=2,故t的最小值為2,所以C正確?

令/(x)=0可得x=0,所以/(久)只有一個(gè)零點(diǎn),所以④。正確.

故選:ABC.

利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性,由單調(diào)性可得求得極值,可知①②③正確,由零點(diǎn)的定義可得④不

正確.

本題考查了命題的真假的判斷與應(yīng)用,屬中檔題.

12.【答案】BCD

【解析】解:由4c=2,=DC=,7,.?.△4C。是直角三角形,故乙4CD=泉

AB=BC=AC=2,,二A/ICB是正三角形,/.ACB=^=^BAC,

沒翻折時(shí),直線CC與4B的夾角為兀一9一?一*=工,翻折時(shí),所成角逐漸增大,可取*

故異面面直線4B與CD所成角的范圍是臉為,故A錯(cuò)誤;

所以481平面DCM,4Bu平面4BC,所以平面ABC_L平面DCM,

過。作DO1CM于。,由可得。。=4。,可得。在AC的垂直平分線上,

又4c的垂直平分線過點(diǎn)B,可得0是正三角形的外心,可得。B=DC=DA=yTL

.-.^ADB^ACD,故P在點(diǎn)。時(shí),4PB最大,最大值為全故8正確,

當(dāng)平面4CC_L平面/CB時(shí),點(diǎn)。到平面力BC的距離最大,最大值為D到4C的距離,體積最大1,

故體積的最大值為gxs-8c-1=;X;X2X2X?=?,故C正確,

當(dāng)二面角£>一47一8的大小為看時(shí),取4c的中點(diǎn)M,易得為二面角。一4C—B的平面角,

故4DMB=£

O

可知球心是過正三角形ABC的中心的垂線與過M與平面力CD的垂線的交點(diǎn)N,

由已知可得M。=《xM8=華,又易得乙NMO=g故NO=?tanJ所以NO=1,

33J33

...r=J/+(亨)2=故棱錐。-4BC的外接球表面積為4〃/=等.故D正確.

故選:BCD.

由已知可得異面面直線4B與CD所成角的范圍是給,芻,可判斷4取AB的中點(diǎn)M,連接CM,當(dāng)

CDJ.4B時(shí),P在點(diǎn)。時(shí),N4PB最大,最大值為*可判斷B;當(dāng)平面力DC1平面4cB時(shí),點(diǎn)。到平

面4BC的距離最大,可求最大體積,可判斷C;當(dāng)二面角D-4C-B的大小為看時(shí),取4c的中點(diǎn)M,

易得為二面角D-4C-B的平面角,可求三棱錐D-4BC的外接球表面積,可判斷D.

本題考查翻折問題,考查線線角,線面角的求法,考查外接球的表面積的求法,屬中檔題.

13.【答案】1

【解析】

【分析】

本題考查了復(fù)數(shù)的運(yùn)算法則、幾何意義,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

利用復(fù)數(shù)的運(yùn)算法則、幾何意義即可得出.

【解答】

解:在復(fù)平面內(nèi),復(fù)數(shù)z=i(a+i)=-1+出對(duì)應(yīng)的點(diǎn)(一l,a)在直線%+y=0上,

???—1+a=0,解得a=1.

故答案為:1.

14.【答案】135

【解析】解:在(3X-?尸的展開式中,各項(xiàng)系數(shù)和與二項(xiàng)式系數(shù)和之和為2n+2n=128,n=6,

則展開式中的通項(xiàng)公式為2+1=d-36-r-(-l)r-X6-T-

令6-多=0,求得r=4,可得常數(shù)項(xiàng)為C凱32=135,

故答案為:135.

由題意利用二項(xiàng)式系數(shù)的性質(zhì)、二項(xiàng)展開式的通項(xiàng)公式,求得展開式的常數(shù)項(xiàng).

本題主要考查二項(xiàng)式定理的應(yīng)用,二項(xiàng)展開式的通項(xiàng)公式,二項(xiàng)式系數(shù)的性質(zhì),屬于中檔題.

15.【答案】6

【解析】解:因?yàn)镾12=皿歲々)=6(%+a]?)=6(。6+a7)<0?

所以&6+a7<0,又45+a7=2a6>0,

所以。6>0,所以。7<0,則(Sn)max=S6.

故答案為:6.

利用等差數(shù)列{冊(cè)}前項(xiàng)和公式和等差數(shù)列{a”}數(shù)列的對(duì)稱性,可得到>o,a7<0,從而得出結(jié)

果.

本題主要考查等差數(shù)列前n項(xiàng)和公式,等差數(shù)列的性質(zhì),考查運(yùn)算求解能力,屬于基礎(chǔ)題.

16.【答案】當(dāng)且

【解析】解:由題意得設(shè)橢圓1+看=1(%>a>0),雙曲線C2:著一技=192也>0),

且設(shè)仍久|=血,\PF2\=n,

由橢圓的定義得Hl+71=2al①,

由雙曲線的定義得-n|=202②,

由①2+②2得機(jī)2+九2=2((X1+Q分,

由①2_②2得nm=Q:_談,

22

在^PF/2中,由余弦定理得(2c)2=m4-n—2mncosZ-F1PF2y

??.al+3al=4c2③,

設(shè)&=2ccos0,a2=c-sinO,

???工+!=強(qiáng)+%=2cos9+^^-sin9=^-^sin(0+g),

6162cc33'3,

當(dāng)。+g=2k兀+1(46Z)即。=3+2々兀時(shí),[+2■取最大值為勺產(chǎn).

故答案為:殍.

由橢圓的定義及雙曲線的定義結(jié)合余弦定理可得城+3慰=4c2,設(shè)的=2ccos0,a2=審0

sin。,利用三角換元求出21+白1的最大值,即可得出答案.

ele2

本題考查雙曲線的性質(zhì),考查換元法,考查轉(zhuǎn)化思想,考查邏輯推理能力和運(yùn)算能力,屬于中檔

題.

17.【答案】解:(1)證明:由已知可得即+2—即+1=2(an+i—an)+2n+】,

%2一冊(cè)+1£Tn=l,故匕+1-垢=1,

即2九+1

所以{4}為等差數(shù)列,且其首項(xiàng)為瓦=亨=1,其公差為1;

(2)由(1)知九==1+(n-1)-1=n,

na1

則a^+i—an=n-2,則(a2—a。+(a3—a2)+…+(a?i—n-i)=1x2*+2x2?+??,+(n—1),

2f

12n-1

故an-ai=1-2+2?2+-+(n-1)-20,

23

2(an-a1)=1,2+2?2+??,+(n-1)②,

①一②得an=5-2)-2幾+3.

所以{aj的通項(xiàng)公式為即=(n-2)-2n+3.

n+11

【解析】(1)由已知可得與+2-an+i=2(an+1-an)+2,即凈耕-%圻&=1,故一

1

bn=l,結(jié)合瓦=號(hào)=1可證明{bn}是等差數(shù)列;

(2)由(1)知b=巧育=1+5-1),1=〃,則冊(cè)+1—的=入2”,進(jìn)一步利用累加法即可即

可求出{即}的通項(xiàng)公式.

本題考查數(shù)列的遞推公式,涉及累加法,考查學(xué)生的邏輯推理和運(yùn)算求解的能力,屬于中檔題.

18.【答案】解:(1)因?yàn)閍sivVl4-csinC=(-^―asinC+b)sinB,

由正弦定理得,a2+c2=acsinB+bz,

A

:.a2+c2—b2=^^-acsinB=2accosB>

故=cosBy即taziB=y/~3f

因?yàn)锽為三角形內(nèi)角,所以B冶,;

(2)如圖延長BD到E,使得BE=BD,則成=市+瓦則麗=*瓦5+近),

BD=式氏4+BC+2BA-BQ=4,

即4=[(a2+c2+2accos60°'),

■-a2+c2=16—ac>2ac,當(dāng)且僅當(dāng)a=c時(shí)取等號(hào),

解得,ac<y,

△4BC面積S=acsinB=-^-CLC<X=巧』

【解析】(1)由已知結(jié)合正弦定理及余弦定理進(jìn)行化簡(jiǎn)可求tanB,進(jìn)而可求B;

(2)延長BD到E,使得BE=8。,則麗=瓦?+而,則前="(瓦^+方),然后結(jié)合向量數(shù)量積

的性質(zhì)及基本不等式可求ac的范圍,然后結(jié)合三角形的面積公式可求.

本題主要考查了正弦定理,余弦定理,三角形的面積公式及向量數(shù)量積的性質(zhì)的綜合應(yīng)用,屬于

中檔題.

19.【答案】解:(1)由莖葉圖得到的所有數(shù)據(jù)從小到大排列,

其中8.6出現(xiàn)的次數(shù)最多,

所以眾數(shù)為8.6,中位數(shù)為駕強(qiáng)=8.75;

(2)由莖葉圖可知,幸福度為“極幸福”的人有4人,

設(shè)4表示所取的3人中有i個(gè)人是“極幸?!钡娜耍?/p>

至多有1人是“極幸?!庇洖槭录?

則P(2)=P(4°)+P(&)=/+饕=霽,

故至多有1人是“極幸?!钡母怕蕿槔郏?/p>

(3)從16人中樣本數(shù)據(jù)中任意選取1人,抽到“極幸?!钡娜说母怕蕿?/p>

由題意可知,從該社區(qū)中任選1人,抽到“極幸?!钡娜说母怕蕿?/p>

由題意可知,6的可能取值為0,1,2,3,

所以P&=0)=弓)3=系

P6=1)=%(乎=錄

P(f=2)=C42滬春

P&=3)=(護(hù)=/,

故f的分布列為:

0123

27279

p1

64646464

所以E(f)=0xK+lxa+2x號(hào)+3x/=0.75.

【解析】(1)利用眾數(shù)以及中位數(shù)的定義求解即可;

(2)先求出福度為“極幸?!钡娜擞?人,利用古典概型的概率公式求解即可;

(3)先求出隨機(jī)變量f的可能取值,然后求出其對(duì)應(yīng)的概率,列出分布列,由數(shù)學(xué)期望的計(jì)算公式

求解即可.

本題考查了中位數(shù)、眾數(shù)的定義的理解與應(yīng)用,離散型隨機(jī)變量及其分布列和離散型隨機(jī)變量期

望的求解與應(yīng)用,考查了邏輯推理能力與化簡(jiǎn)運(yùn)算能力,屬于中檔題.

20.【答案】(I)證明:如圖,

在矩形4BCD中,?:AB=2,BC=4,E為4D中點(diǎn),[AB=4E=2,

???。為8匹的中點(diǎn),.?.4。18后,由題意可知,A'O1BE,

?.?平面4BE1平面BCDE,平面A'BEn平面BCDE=BE,4。u平面ABE,

A'O1平面BCDE,

vCDu平面BCDE,

???A'O1CD.

(n)解:取8C中點(diǎn)為F,連接OF,

由矩形ABC。性質(zhì),AB=2,BC=4,可知。尸J.BE,

由(I)可知,A'O1BE,A'O1OF,

以。為原點(diǎn),。4'為z軸,OF為x軸,OE為y軸建立坐標(biāo)系,

在RtABAE中,由4B=2,AE=2,則BE=04=<7,

A'(0,0,V-2),E(0,V-2,0),F(^~2,0,0),5(0,-<2,0),C(2「,V-2,0),D(/1,2<1,0),

=(2<2,y/~2,-<2)>前=(吃。,0),~AE=

設(shè)平面4'0E的一個(gè)法向量為記=(x,y,z),

則8,竺=。,-°,令y=z=l,則x=-1,.??沆=(-1,1,1),

設(shè)直線4'C與平面4DE所成角為仇

sine=|cos</,記>|=\7=~\=?,

???直線4c與平面4DE所成角的正弦值為苧.

(HI)解:假設(shè)在線段AC上存在點(diǎn)P,滿足0P〃平面ADE,

設(shè)誦=4彳?(0W4W1).

由於=(2/1,。,一口),.??正=(2/^A,O入「門心,P(2\T2A,C■入,H4,

OP=yTZX,C-

若OP〃平面ADE,MmOP=0,

-2<2A+<2A+-<2A=0,解得4=€[0,1],

所以”=:.

AC2

【解析】本題考查線線垂直的證明,考查線面角的正弦值的求法,考查滿足線面平行的點(diǎn)是否存

在的判斷與求法,考查空間中線線、線面、面面間的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力,

是中檔題.

(I)推導(dǎo)出A'。"!?BE,貝必'01平面BCDE,由此能證明4。1CD.

(H)取BC中點(diǎn)為F,連接OF,以。為原點(diǎn),。4為z軸,OF為x軸,OE為y軸建立坐標(biāo)系,利用向

量法能求出直線AC與平面4DE所成角的正弦值.

(HI)假設(shè)在線段4C上存在點(diǎn)P,滿足0P〃平面ADE,利用向量法能求出字的值.

AC

21.【答案】解:(I)由題意可得,/(%)<0在(0,+8)上恒成立,即a/>xinXta>(恒成立,

令九(x)=等,則l(x)=與警,

由八'(X)>0得0<x<e,由九'(久)<0得x>e,

所以h(x)在(0,e)上遞增,在(e,+8)上遞減,因此僅為也這=h(e)=:,

所以只需a>工,

e

即實(shí)數(shù)a的取值范圍是+8).

(II)由%伍%—Q%2=o知m%=Q%,由題意,可得,nm=am,Inn=an,

所以Em—Inn=a(m—n),即0=癡]叫

1m

+=-

又bun4-Inn=a(m4-n)=———1-Inn

令t=;,tG(1,2],則bwm=

令g(t)=與

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論