版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2024屆黃岡市啟黃中學數(shù)學高三上期末考試試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區(qū)內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若直線的傾斜角為,則的值為()A. B. C. D.2.已知函數(shù)的零點為m,若存在實數(shù)n使且,則實數(shù)a的取值范圍是()A. B. C. D.3.若復數(shù)滿足,則的虛部為()A.5 B. C. D.-54.下列圖形中,不是三棱柱展開圖的是()A. B. C. D.5.設i是虛數(shù)單位,若復數(shù)是純虛數(shù),則a的值為()A. B.3 C.1 D.6.在中,點為中點,過點的直線與,所在直線分別交于點,,若,,則的最小值為()A. B.2 C.3 D.7.設,均為非零的平面向量,則“存在負數(shù),使得”是“”的A.充要條件 B.充分不必要條件C.必要不充分條件 D.既不充分也不必要條件8.根據(jù)最小二乘法由一組樣本點(其中),求得的回歸方程是,則下列說法正確的是()A.至少有一個樣本點落在回歸直線上B.若所有樣本點都在回歸直線上,則變量同的相關系數(shù)為1C.對所有的解釋變量(),的值一定與有誤差D.若回歸直線的斜率,則變量x與y正相關9.設F為雙曲線C:(a>0,b>0)的右焦點,O為坐標原點,以OF為直徑的圓與圓x2+y2=a2交于P、Q兩點.若|PQ|=|OF|,則C的離心率為A. B.C.2 D.10.在平面直角坐標系中,已知是圓上兩個動點,且滿足,設到直線的距離之和的最大值為,若數(shù)列的前項和恒成立,則實數(shù)的取值范圍是()A. B. C. D.11.已知為等比數(shù)列,,,則()A.9 B.-9 C. D.12.已知雙曲線:(,)的焦距為.點為雙曲線的右頂點,若點到雙曲線的漸近線的距離為,則雙曲線的離心率是()A. B. C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.在平面直角坐標系中,雙曲線的右準線與漸近線的交點在拋物線上,則實數(shù)的值為________.14.函數(shù)的定義域為,其圖象如圖所示.函數(shù)是定義域為的奇函數(shù),滿足,且當時,.給出下列三個結論:①;②函數(shù)在內有且僅有個零點;③不等式的解集為.其中,正確結論的序號是________.15.滿足約束條件的目標函數(shù)的最小值是.16.等邊的邊長為2,則在方向上的投影為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),.(1)當時,討論函數(shù)的零點個數(shù);(2)若在上單調遞增,且求c的最大值.18.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是邊長為2的菱形,,為等邊三角形,平面平面ABCD,M,N分別是線段PD和BC的中點.(1)求直線CM與平面PAB所成角的正弦值;(2)求二面角D-AP-B的余弦值;(3)試判斷直線MN與平面PAB的位置關系,并給出證明.19.(12分)已知在平面直角坐標系中,直線的參數(shù)方程為(為參數(shù)),以坐標原點為極點,軸非負半軸為極軸建立極坐標系,曲線的極坐標方程為,點的極坐標為.(1)求直線的極坐標方程;(2)若直線與曲線交于,兩點,求的面積.20.(12分)已知函數(shù),它的導函數(shù)為.(1)當時,求的零點;(2)當時,證明:.21.(12分)已知函數(shù)(為常數(shù))(Ⅰ)當時,求的單調區(qū)間;(Ⅱ)若為增函數(shù),求實數(shù)的取值范圍.22.(10分)已知函數(shù).(1)當時,解關于的不等式;(2)若對任意,都存在,使得不等式成立,求實數(shù)的取值范圍.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
根據(jù)題意可得:,所求式子利用二倍角的正弦函數(shù)公式化簡,再利用同角三角函數(shù)間的基本關系弦化切后,將代入計算即可求出值.【詳解】由于直線的傾斜角為,所以,則故答案選B【點睛】本題考查二倍角的正弦函數(shù)公式,同角三角函數(shù)間的基本關系,以及直線傾斜角與斜率之間的關系,熟練掌握公式是解本題的關鍵.2、D【解析】
易知單調遞增,由可得唯一零點,通過已知可求得,則問題轉化為使方程在區(qū)間上有解,化簡可得,借助對號函數(shù)即可解得實數(shù)a的取值范圍.【詳解】易知函數(shù)單調遞增且有惟一的零點為,所以,∴,問題轉化為:使方程在區(qū)間上有解,即在區(qū)間上有解,而根據(jù)“對勾函數(shù)”可知函數(shù)在區(qū)間的值域為,∴.故選D.【點睛】本題考查了函數(shù)的零點問題,考查了方程有解問題,分離參數(shù)法及構造函數(shù)法的應用,考查了利用“對勾函數(shù)”求參數(shù)取值范圍問題,難度較難.3、C【解析】
把已知等式變形,再由復數(shù)代數(shù)形式的乘除運算化簡得答案.【詳解】由(1+i)z=|3+4i|,得z,∴z的虛部為.故選C.【點睛】本題考查復數(shù)代數(shù)形式的乘除運算,考查復數(shù)的基本概念,是基礎題.4、C【解析】
根據(jù)三棱柱的展開圖的可能情況選出選項.【詳解】由圖可知,ABD選項可以圍成三棱柱,C選項不是三棱柱展開圖.故選:C【點睛】本小題主要考查三棱柱展開圖的判斷,屬于基礎題.5、D【解析】
整理復數(shù)為的形式,由復數(shù)為純虛數(shù)可知實部為0,虛部不為0,即可求解.【詳解】由題,,因為純虛數(shù),所以,則,故選:D【點睛】本題考查已知復數(shù)的類型求參數(shù)范圍,考查復數(shù)的除法運算.6、B【解析】
由,,三點共線,可得,轉化,利用均值不等式,即得解.【詳解】因為點為中點,所以,又因為,,所以.因為,,三點共線,所以,所以,當且僅當即時等號成立,所以的最小值為1.故選:B【點睛】本題考查了三點共線的向量表示和利用均值不等式求最值,考查了學生綜合分析,轉化劃歸,數(shù)學運算的能力,屬于中檔題.7、B【解析】
根據(jù)充分條件、必要條件的定義進行分析、判斷后可得結論.【詳解】因為,均為非零的平面向量,存在負數(shù),使得,所以向量,共線且方向相反,所以,即充分性成立;反之,當向量,的夾角為鈍角時,滿足,但此時,不共線且反向,所以必要性不成立.所以“存在負數(shù),使得”是“”的充分不必要條件.故選B.【點睛】判斷p是q的什么條件,需要從兩方面分析:一是由條件p能否推得條件q;二是由條件q能否推得條件p,定義法是判斷充分條件、必要條件的基本的方法,解題時注意選擇恰當?shù)姆椒ㄅ袛嗝}是否正確.8、D【解析】
對每一個選項逐一分析判斷得解.【詳解】回歸直線必過樣本數(shù)據(jù)中心點,但樣本點可能全部不在回歸直線上﹐故A錯誤;所有樣本點都在回歸直線上,則變量間的相關系數(shù)為,故B錯誤;若所有的樣本點都在回歸直線上,則的值與相等,故C錯誤;相關系數(shù)r與符號相同,若回歸直線的斜率,則,樣本點分布應從左到右是上升的,則變量x與y正相關,故D正確.故選D.【點睛】本題主要考查線性回歸方程的性質,意在考查學生對該知識的理解掌握水平和分析推理能力.9、A【解析】
準確畫圖,由圖形對稱性得出P點坐標,代入圓的方程得到c與a關系,可求雙曲線的離心率.【詳解】設與軸交于點,由對稱性可知軸,又,為以為直徑的圓的半徑,為圓心.,又點在圓上,,即.,故選A.【點睛】本題為圓錐曲線離心率的求解,難度適中,審題時注意半徑還是直徑,優(yōu)先考慮幾何法,避免代數(shù)法從頭至尾,運算繁瑣,準確率大大降低,雙曲線離心率問題是圓錐曲線中的重點問題,需強化練習,才能在解決此類問題時事半功倍,信手拈來.10、B【解析】
由于到直線的距離和等于中點到此直線距離的二倍,所以只需求中點到此直線距離的最大值即可。再得到中點的軌跡是圓,再通過此圓的圓心到直線距離,半徑和中點到此直線距離的最大值的關系可以求出。再通過裂項的方法求的前項和,即可通過不等式來求解的取值范圍.【詳解】由,得,.設線段的中點,則,在圓上,到直線的距離之和等于點到該直線的距離的兩倍,點到直線距離的最大值為圓心到直線的距離與圓的半徑之和,而圓的圓心到直線的距離為,,,..故選:【點睛】本題考查了向量數(shù)量積,點到直線的距離,數(shù)列求和等知識,是一道不錯的綜合題.11、C【解析】
根據(jù)等比數(shù)列的下標和性質可求出,便可得出等比數(shù)列的公比,再根據(jù)等比數(shù)列的性質即可求出.【詳解】∵,∴,又,可解得或設等比數(shù)列的公比為,則當時,,∴;當時,,∴.故選:C.【點睛】本題主要考查等比數(shù)列的性質應用,意在考查學生的數(shù)學運算能力,屬于基礎題.12、A【解析】
由點到直線距離公式建立的等式,變形后可求得離心率.【詳解】由題意,一條漸近線方程為,即,∴,,即,,.故選:A.【點睛】本題考查求雙曲線的離心率,掌握漸近線方程與點到直線距離公式是解題基礎.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求出雙曲線的右準線與漸近線的交點坐標,并將該交點代入拋物線的方程,即可求出實數(shù)的方程.【詳解】雙曲線的半焦距為,則雙曲線的右準線方程為,漸近線方程為,所以,該雙曲線右準線與漸近線的交點為.由題意得,解得.故答案為:.【點睛】本題考查利用拋物線上的點求參數(shù),涉及到雙曲線的準線與漸近線方程的應用,考查計算能力,屬于中等題.14、①③【解析】
利用奇函數(shù)和,得出函數(shù)的周期為,由圖可直接判斷①;利用賦值法求得,結合,進而可判斷函數(shù)在內的零點個數(shù),可判斷②的正誤;采用換元法,結合圖象即可得解,可判斷③的正誤.綜合可得出結論.【詳解】因為函數(shù)是奇函數(shù),所以,又,所以,即,所以,函數(shù)的周期為.對于①,由于函數(shù)是上的奇函數(shù),所以,,故①正確;對于②,,令,可得,得,所以,函數(shù)在區(qū)間上的零點為和.因為函數(shù)的周期為,所以函數(shù)在內有個零點,分別是、、、、,故②錯誤;對于③,令,則需求的解集,由圖象可知,,所以,故③正確.故答案為:①③.【點睛】本題考查函數(shù)的圖象與性質,涉及奇偶性、周期性和零點等知識點,考查學生分析問題的能力和數(shù)形結合能力,屬于中等題.15、-2【解析】
可行域是如圖的菱形ABCD,代入計算,知為最小.16、【解析】
建立直角坐標系,結合向量的坐標運算求解在方向上的投影即可.【詳解】建立如圖所示的平面直角坐標系,由題意可知:,,,則:,,且,,據(jù)此可知在方向上的投影為.【點睛】本題主要考查平面向量數(shù)量積的坐標運算,向量投影的定義與計算等知識,意在考查學生的轉化能力和計算求解能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析(2)2【解析】
(1)將代入可得,令,則,設,則轉化問題為與的交點問題,利用導函數(shù)判斷的圖象,即可求解;(2)由題可得在上恒成立,設,利用導函數(shù)可得,則,即,再設,利用導函數(shù)求得的最小值,則,進而求解.【詳解】(1)當時,,定義域為,由可得,令,則,由,得;由,得,所以在上單調遞增,在上單調遞減,則的最大值為,且當時,;當時,,由此作出函數(shù)的大致圖象,如圖所示.由圖可知,當時,直線和函數(shù)的圖象有兩個交點,即函數(shù)有兩個零點;當或,即或時,直線和函數(shù)的圖象有一個交點,即函數(shù)有一個零點;當即時,直線與函數(shù)的象沒有交點,即函數(shù)無零點.(2)因為在上單調遞增,即在上恒成立,設,則,①若,則,則在上單調遞減,顯然,在上不恒成立;②若,則,在上單調遞減,當時,,故,單調遞減,不符合題意;③若,當時,,單調遞減,當時,,單調遞增,所以,由,得,設,則,當時,,單調遞減;當時,,單調遞增,所以,所以,又,所以,即c的最大值為2.【點睛】本題考查利用導函數(shù)研究函數(shù)的零點問題,考查利用導函數(shù)求最值,考查運算能力與分類討論思想.18、(1)(2)(3)直線平面,證明見解析【解析】
取中點,連接,則,再由已知證明平面,以為坐標原點,分別以,,所在直線為,,軸建立空間直角坐標系,求出平面的一個法向量.(1)求出的坐標,由與所成角的余弦值可得直線與平面所成角的正弦值;(2)求出平面的一個法向量,再由兩平面法向量所成角的余弦值可得二面角的余弦值;(3)求出的坐標,由,結合平面,可得直線平面.【詳解】底面是邊長為2的菱形,,為等邊三角形.取中點,連接,則,為等邊三角形,,又平面平面,且平面平面,平面.以為坐標原點,分別以,,所在直線為,,軸建立空間直角坐標系.則,,,,1,,,0,,,,,,0,,,,,,,.,,設平面的一個法向量為.由,取,得.(1)證明:設直線與平面所成角為,,則,即直線與平面所成角的正弦值為;(2)設平面的一個法向量為,由,得二面角的余弦值為;(3),,又平面,直線平面.【點睛】本題考查線面平行的證明,考查二面角的余弦值的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查推理能力與計算能力,屬于中檔題.19、(1)(2)【解析】
(1)先消去參數(shù),化為直角坐標方程,再利用求解.(2)直線與曲線方程聯(lián)立,得,求得弦長和點到直線的距離,再求的面積.【詳解】(1)由已知消去得,則,所以,所以直線的極坐標方程為.(2)由,得,設,兩點對應的極分別為,,則,,所以,又點到直線的距離所以【點睛】本題主要考查參數(shù)方程、直角坐標方程及極坐標方程的轉化和直線與曲線的位置關系,還考查了數(shù)形結合的思想和運算求解的能力,屬于中檔題.20、(1)見解析;(2)證明見解析.【解析】
當時,求函數(shù)的導數(shù),判斷導函數(shù)的單調性,計算即為導函數(shù)的零點;
當時,分類討論x的范圍,可令新函數(shù),計算新函數(shù)的最值可證明.【詳解】(1)的定義域為當時,,,易知為上的增函數(shù),又,所以是的唯一零點;(2)證明:當時,,①若,則,所以成立,②若,設,則,令,則,因為,所以,從而在上單調遞增,所以,即,在上單調遞增;所以,即,故.【點睛】本題主要考查導數(shù)法研究函數(shù)的單調性,單調性,零點的求法.注意分類討論和
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024-2030年中國奢侈品箱包行業(yè)規(guī)模分析及投資策略研究報告
- 2024-2030年中國半纖維素酶行業(yè)運行狀況及投資發(fā)展前景預測報告
- 2024年生產車間租賃與產業(yè)基金投資服務合同3篇
- 質量監(jiān)督程序
- 詹凱煜畢業(yè)設計報告書論文
- 2024年度高層建筑基礎施工混凝土供應合同范本3篇
- 海南省部分學校2021-2022學年高一上學期期中考試歷史試題
- 2024年城市宣傳片制作與發(fā)布合同范本3篇
- 2025年嘉峪關道路貨運駕駛員從業(yè)資格證考試
- 2025投影系統(tǒng)設備購銷合同書
- 兵團電大建筑結構實訓
- 愛吃糖的大獅子
- 醫(yī)學小常識幻燈片課件
- 化妝品功效評價
- 風電場通用類作業(yè)行為風險管控清單
- 【幼兒園園本教研】幼兒表征的教師一對一傾聽策略
- GCS評分實施細則及要點說明課件
- 英語│英語中考英語閱讀理解(有難度)
- 手術操作分類代碼國家臨床版3.0
- 采血知情同意書模板
- 我的家鄉(xiāng)廣東廣州宣傳簡介
評論
0/150
提交評論