版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
中英文對照外文翻譯文獻(xiàn)(文檔含英文原文和中文翻譯)原文:Energysavingandsomeenvironmentimprovementsincoke-ovenplantsAbstractTheenthalpyofinletcoalandfuelgasisdischargedfromacoke-ovenplantinthefollowingforms:chemicalandthermalenthalpyofincandescentcoke,chemicalandthermalenthalpyofcoke-ovengas,thermalenthalpyofcombustionexhaustgas,andwasteheatfromthebodyofthecokeoven.Inrecentyearstherecoveryofseveralkindsofwasteenergyfromcokeovenshasbeenpromotedmainlyforenergysavingpurposes,butalsofortheimprovementofenvironmentalconditions.Amongthevariousdevicesyetrealized,thesubstitutionoftheconventionalwetquenchingmethodwithacokedrycoolingisthemosttechnicallyandeconomicallyconvenient.Theaimofthispaperismainlyareviewofthemaintypesofcokedrycoolingplantsandadetailedexaminationoftheinfiuenceofsomeparameters,particularlyoftemperatureandpressureoftheproducedsteam,andontheenergyefficiencyoftheseplants.Introduction1.1.UsableenergyTheenergyofasystem-environmentcombinationisusuallydefinedastheamountofworkattainablewhenthesystemisbroughttoastateofunrestrictedequilibrium(thermal,mechanicalandchemical)bymeansofreversibleprocesses,involvingonlytheenvironmentatauniformlyconstanttemperatureandpressureandcomprisingsubstancesthatareinthermodynamicequilibrium.Notwithstandingthequitedifferentmeaning,chemicalenergiesdifferfromlowerheatingvaluesslightly,asisdiscussedin[1,2].Thechemicalenergygenerallyfallsbetweenthehigherandlowerheatingvaluesbutisclosertothehigher.Nomenclaturecpconstantpressureheatcapacity[kJ/(kgK)]Exenergy[kJ]Exuusableenergy[kJ]exspecificenergy[kJ/kg]Gvvolumeflowrate[m3(nTp)/h]Gv*specificvolumeflowrate[m3(nTp)/tdrycoke]ispecificenthalpy[kJ/kg]ppressure[bar]sspecificentropy[kJ/(kgK]Ttemperature[C,K]Toenvironmenttemperature[C,K]vspecificvolume[m3/kg]Фenergyeffciency[dimensionless]Nonetheless,thechemicalenergyisnotsuitableforquantifyingthetechnicalvalueofafuelfortworeasons:(i)Priortoconsideringheattransfer,itisnecessarytoaccountfortheessentiallyirreversiblecombustionprocess,whichdecreasestheexergiesofvariousfuelsgreatlyindifferentways.(ii)Theworkcorrespondingtoreversibleexpansionofseveralcomponents(inparticularCO2)downtotheiratmosphericpartialpressurescannotbeobtainedfromthecombustiongas,asisimplicitintheenergyde?nition.Inaddition,thisworkdifferswithfueltype.Consequently,Bisio[3]definedusableenergyastheexergeticvaluefollowinganadiabaticcombustionwithagivenexcessairratio(e.g.,1.1)minustheenergylossresultingfromirreversiblemixingofcom-bustiongaswiththeatmosphereafterhavingreachedatmosphericpressureandtemperature.Theratioofusableenergytolowerheatingvalueofagivenfuelistermedthemeritfactor.Thisfactorisalwayslessthanoneandincreasesasthetechnicalandeconomicvaluesofafuelrise.Theparameter“usableexergy”,ashasbeende?nedandappliedin[3],issuitableintheexamin-ationofplants,thatutilizefuelmixing,whentheaimistoreduceboththetotalfuelconsumptionand,chiefly,themorevaluablecomponentone.1.2.Coke-ovenenergyrecoveriesThechemicalenergyofafuelgas,whichisusedforacokeoven,amountsto2500-3200MJ/tdrycoal.Thisenergy,degradedtothermalenergyofvariousoperativevalues,isdischargedfromtheplantinsuchforms:Thermalenergyofincandescentcoke(43-48%)Thermalenthalpyofcoke-ovengas(24-30%)Thermalenergyofwastegas(10-18%)Permeability,convectionandradiationheatfromtheexternalsurfaceofcokeoven,andvariouslosses(10-17%)Theoilcrisisof1973createdastrongimpulsetowardsanewthinkingontheconsumptionandrationalutilizationofenergy,particularlyinthehighlyindustrializedcountrieswithlimitedindigenousenergyresources.Atthesametime,attentionthroughouttheworldwasalsoincreas-inglyfocusedonenvironmentproblems.Thepossibleutilizationofthethermalenergyofincandescentcokeisdealtwithinmanypapers.Usually,incokingtechnologythecokeiscooledbybeingsprayedwithwaterunderspecialquenchingtowers.Inrecentyears,thevarioustypesofdrycoolingplantsallowtherecov-eryofnearly80%ofthethermalenergyofincandescentcoke.Thepossibilitiesofutilizingreco-veredenergyareasfollows:Productionofsteamandelectricity.Preheatingofcokingcoal.Roomheating.Thethermalenergyofcoke-ovengas,whichisthesecondlargestintheabovelisting,hassofarbeenrarelyutilized.Variousstudies,however,havebeencarriedoutforthepossibleutilizationofthiswasteenergyandatechniquehasrecentlybeencommercializedinJapan.Thethermalenergyofcombustionexhaustgasisutilizedtopreheatboththecombustionairandfuelgasmixturethroughalarge-capacityregenerator.Consequentlythewastegastemperatureisreducedtoapproximately200C.Lately,thefurtherrecoveryofheatfromwastegashasbeenreportedinafewcasesusingaheatpipeinstalledintheˉue.Thevariouskindsofheatwastedfromthecoke-ovenexternalsurfacehavebeendecreasedbythereinforcedsealingandbetterthermalinsulationofcokeovens.Inthefollowingsections,themaintypesofcoke-ovenenergyrecoverieswillbeconsideredforacomparison.1.3.ProtectionoftheenvironmentAswiththeproblemofenergysavingandrecovery,thelastyearshavebeencharacterizedbyincreasedpreventionofatmosphericandwaterpollutionbyindustrialemissionsanddomesticwastes.Worktocontrolatmosphericpollutionhasbeencarriedoutinalldevelopedcountries.AccordingtoZaichenkoetal.,asaresultofincludingmeasuresforenvironmentalprotection,theinvestmentandthecokingcostsareincreasedby15%.However,ifthecalculationsincludedallowanceforlossescausedbyadverseeffectsofatmosphericpollutiononworkershealth,instal-lationofengineeringfacilitiesformaintainingcleanaircanbecost-effective.Inanycase,itisobviousthatanenvironmentalfacilityisparticularlytemptingwhen,aswithcokedrycoolingplants,inadditiontoenvironmentadvantages,anenergyrecoverycanbeassociated,eveniftheinvestmentcostsarehigherandnotjusti?edonlybyenergysaving.2.Cokedryquenching2.1.Methodsforenergyrecoveryandsavingfromcokeatthecoke-ovenoutletTheideaofrecoveringthermalenergyfromincandescentcokebymeansofaninertgasdatesbacktotheearly1900s.The?rstindustrialplants,designedparticularlybytheSulzerBrothers(Winterthur,Switzerland)werecarriedoutinthe'20sand'30sbothintheUSAandinEurope(Germany,France,UK,Switzerland)[4,18].However,thegreaterinvestmentcostsofdryquench-ingplants,incomparisonwiththoseofthewetquenchingones,wereamortizedwithdif?cultyinaperiodinwhichenergywasverycheap.Consequently,dryquenchingplantsweregivenup.Intheearly1960s,anewinterestarose:intheUSSR,drycoolingplants,whichbasicallyfollowedtheSulzerdesign,werebuiltwiththeprimaryaimofpreventingthecokefromfreezinginwinter,ashappenswithwetquenchedcoke.Theplant,constructedinvariouscountriesaccord-ingtotheSovietGiprokoksprocess[6],isschematicallyshowninFig.1.Thered-hotcoke,atatemperatureofabout1100C,ispushedfromovens,A,intocontainersplacedoncars.Loadedcarsaremovedtothedrycoolingplant,wherecontainers,B,areliftedbybridgecrane,C,andunloadedthroughthechargingsystem,D,intopre-chamber,E.Then,hotcokeistransferredintothecoolingchamber,F,insmallbatches.Afterleavingthecoolingchamberthroughthedischarg-ingsystem,G,cokeruns,atatemperatureofabout200C,ontoconveyorbelt,H.Cokeisrefriger-atedbyacirculatinggas,composedmainlybynitrogenandmovedbythemainblower,I.Thisgastransfersthermalenergyinboiler,N,whichproducessuperheatedsteam,O,atapressureupto100bar.Beforeenteringtheboiler,thegasisscrubbedinthecoarsede-duster,J,removingcoarseparticlesofcokedusttoprotecttheboilersurfacefromerosion.Afterleavingtheboiler,thegasstreamsthroughthe?nededuster,K,where?nedustisscrubbedout.In1983adrycoolingplant,schematicallyshowninFig.2,beganoperationinGermany.Itsmaincharacteristicisthat1/3ofthethermalenergyistransferreddirectlyfromthecoketothevaporizingwaterandtheremaining2/3throughtheinertgas.Theadvantagesarealowerquantityofcirculatinggaswithacorrespondinglylowerconsumptionofelectricalenergybytheblowerandagreaterenergyrecovery.Refrigeratingwallsinthecoolingchamberrepresentthecriticalpointoftheplanti.InGermany,acombinationofthecokedrycoolingandcoalpreheatingplanthasbeendeveloped[5,9,14±16].Thissystemrealizesprimaryenergysaving(e.g.gas)insteadofenergyrecoveryoflowerenergyvalue(steam)andthusitisthermodynamicallypreferred(see,e.g.,[29]).Inaddition,thewell-knownadvantagesofthesingleprocesseswithrespecttocokequalityandincreasedoutputhavebeencon?rmed.Thecompletelyclosedsystempermitssignificantenvironmentalimprovementsinthecokingplantsector,avoidingtheimmissionsofdustintotheatmosphereinapracticallycompleteway.Jung[13]consideredtheconvenienceofusingwatergas(H2+CO)astheheattransferfluid.Indeed,watergashasathermaldiffusivitythreetimesthatofnitrogen,andthusitallowsustoreducetheboilersurfaceby50%.Inananonymousnoteof“MetalProducing”[10],itwasstatedthatthemostconvenientusesoftheenergyrecoveredfromcokedryquenching(atleastintheUSA)arethefollowing:thedryingofcoalandtheheatingofmakeupwaterforboilersthatprovidesteaminthecokeplantperse.Indeed,theenergyisavailablewhenthecokeplantisrunning,whichisofcoursewhenitisrequired.Inaddition,thesequantitiesofenergymatchfairlywell.2.2.Researchontheoptimaltemperaturesandpressuresofsteam2.2.1.GeneralitiesaboutenergyandenergyanalysisInFig.3energyandenergyflowdiagramsarereportedforatypicalcokedrycoolingplantwithinletcoketemperature=1050°Candoutletcoketemperature=200°C.Bothdiagramsareuse-ful,however,onlyenergyflowissuitabletovisualizetheoperativevalueofthevariousenergies.FromFig.3oneremarksthatwithsuchdevicesitispossibletorecoverabout44%oftheenergyvalueoftheincandescentcokethermalenergy,correspondingtoaboutthe20%oftheenergyvalueoftheinletcoal.Owingtotherelativelylowvalueoftheenergyefficiencyofacokedryquenchingsystem,itseemsinterestingtoresearchtheoptimalvaluesofsomeparameters,andinparticularthecharac-teristicsofthesteamproduced(pressureandtemperature)inordertoobtainthemorecon-venientplant.Acomputeranalysishasbeenmade,assumingsomeinputdata,experimentallyobtainedfromarecentactualplant.Theinputdataarethetemperatureandpressurevaluesofthegasflowingthroughtheplant,themassflowratesofcokeattheinletandoutletofthecokecoolingchamber,andattheoutletofthecoarsededuster,themassflowrate,temperatureandpressureofsteam,theblowerisentropicefficiency,andtheefficiencyintheelectromechanicalconversionoftheelectroblower.Thefundamentaldataare:quenchedcokemassflowrate56t/hsteammassflowrate28t/hinletcoketemperature1050°Coutletcoketemperature200°Cspecificvolumeflowrateofgas1650m3(nTp)/tdrycoke.Byvaryingthetemperatureandpressureofsteamand/orthegasflowrate,onehasdeterminedthevariationofthesystemenergyefficiency,Ф,sodefined:where:Exst=steamexergy;Exwa=boilerfeedwater;Exc=energycorrespondingtotheelectricalworkoftheelectroblower;Exco=cokephysicalenergy(thus,excludingthechemicalcomponentofenergytobeutilizedinblastfurnace).2.2.2.SpecificenergydependenceupontemperatureandpressureLetusconsiderspecificenergyasafunctionoftemperature,Tandpressure,p.InthediagramofFig.4,thesteamspecificenergyforanopensystemisreportedasafunctionofpressureforvariousvaluesoftemperature.ItistoberemarkedthatspecificenergyincreasesalwaysasTincreasesatconstantp(fortemperaturesabovethatoftheenvironment),whereasnotalwaysexincreasesasprisesatconstantT.Thisresultseemspuzzlingandcontrarytotheconceptofexergy.Tojustifythetopicinavalidway,letconsiderthedefinitionofspecificenergyforanopensys-tem:andthenThevariationofspecificenthalpy,di,andofspecificentropy,ds,asafunctionofTandpcanbewrittenas[30]:andthenFromtheserelations,oneobtainsthatenergyincreasesastemperaturerises,whenT>To,andtheoppositeisverified,whenT<To,asiswellknown.Abouttheinfluenceofpressure,onecansaythatenergyincreasesaspressurerises,when(T-To.)and?1vtphaveoppositesign,and,sincewithveryfewexceptions?1vtp>0,when(T-To)>0.When(T-To)and?1vtphavethesamesign,onecannotexcludethepossibilitythatexergydecreaseswhenpressuregoesup.Thisindeedisverifiedinarangeinwhichtheattractiveforcesaregreatlyprevailingontherepulsiveforces[31].Fortheproblemthatishereconsidered,thishappensforsuperheatedsteamnotfarfromthecriticalpoint.ThisanalysisjustifiesthatsomeisothermalcurvesofFig.4haveamaximumforagivenpressure.Ontheotherhand,thisresultcouldbeyetpuzzling.Indeed,itiswellknownthattheoperativevalueincreasesalwayswithpressure.Tothispurpose,letuscomparethefollowingparameters:Fromtheserelations,intherangeinwhichforthesteam?2exTp<0itfollows:andthenitfollowsthat,ifenergydecreasesaspressuregoesdown,thedecreaseofenthalpyishigherandconsequently,eveniftheoperativeoftheunitmassofsteamgoesdown,theratioofthisoperativevaluetothe“cost”forobtainingit(i.e.thenecessaryheat)goesupandthisisinagreementwiththefactthatahigherpressureistechnicallyalwaysmorevaluable.2.2.3.Analysisresults“Recoveredexergy”hasbeendetermined;thenumeratorofrelation(1)givesthisparameter.Asanexample,inFigs.5and6therecoveredenergyisshownforonevalueofthespecificvolumeflowrateofgas,alternatively,withsteampressureinabscissae(andtemperatureasparameter)orwithsteamtemperatureinabscissae(andpressureasparameter).Oneremarksthattherecoveredenergygoesupalmostlinearlyasthesteamtemperatureincreases,andgoesupalwaysasthesteampressurerises(contrarytothesteamspecificentropy),butwithnegativesecondderivative.InFig.7therecoveredenergyisshownforonevalueofsteamtemperatureasafunctionofthespecificvolumeflowrateofgas(inabscissae)forvarioussteampressures(reportedasparameter).Tojustifythediagrams,itmustberemarkedthatasthespecificvolumeflowrateofgasincreases,theheatexchangedintheboilerbetweenthegasandthewater-steamincreaseswithnegativesecondderivative.Consequently,foreveryfixedcoupleofvaluesofTandp,theteamflowrateandthetotalsteamenergyexhibitthesamebehavior.Onthecontrary,owingtotheincreaseofthenecessarygascompressionwork,therecoveredenergyhasamaximumincorrespondencewithagivenspecificvolumeflowrateofgas.Thismaximum,foreverytemperaturevalue,tendstoahigherspecificvolumeflowrate,asthepressureincreases.Inparticular,atp=80bar,themaximumisneartothevalueGv*=1650m3(nTp)/tdrycoke.Thevariationsoftheenergyefficiency,owingtoitsdefinitionandtheconstancyofthephysicalenergyoftheincandescentcoke,aretotallysimilartothoseoftherecoveredexergy.Thus,onlytwodiagramsforenergyefficiencyincorrespondencetoaspecificvolumeflowrateofgasGv*=1650m3(nTp)/tdrycokearereported.InFigs.8and9,energyefficiencyvssteampressure(withsteamtemperatureasparameter)orvsthesteamtemperature(withsteampressureasparameter),respectively,isreported.Onthebasisofthevariousdiagrams(notallherereported),thespecificvolumeflowrateofgasGv*=1650m3(nTp)/tdrycokeseemstobethemoreconvenient.Theverylowincreaseoftherecoveredenergy(andthusoftheenergyefficiency),thatcanbenotedforsomevaluesofthecouple(T,p)ofthesteamincorrespondencetovaluesofthespecificvolumeflowrateofgasGv*slightlyhigherthan1650m3(nTp)/tdrycokedoesnotprobablycompensatethehigherplantandmaintenancecosts.Thetemperatureriseallowsaremarkableenergyefficiencyincrease.Thus,itseemsconvenienttochoosethemaximumtemperatureconsistentwiththeuseofmaterialswhicharenotparticularlyexpensive.ThelimitvalueofT=540°Ccanbepresentlychosen.Asthepressurerises,energyefficiencyincreasesremarkablytillapressureofabout80bar,andthentheincreaseisprogressivelyreduced.Forwhatisknowntoauthors,themaximumvaluetillnowappliedisof103barinasteelplantofJapan.Thus,itseemsthatthemoreconvenientpressurevalueisabout100bar.焦?fàn)t設(shè)備的能源節(jié)約和環(huán)境改善摘要在下面幾種形式中焦?fàn)t設(shè)備的進(jìn)口煤和燃?xì)獾臒崃渴遣豢煽刂频模簾霟峤沟幕瘜W(xué)和熱焓,焦?fàn)t煤氣的化學(xué)和熱焓,燃燒排放氣的熱焓,還有從焦煤爐體中浪費的大量熱量。在近些年從焦煤爐體中重復(fù)利用的一些浪費的能源,達(dá)到了主要能源節(jié)約的目的,同時也為環(huán)境改善提供了一定的條件。多種設(shè)備也已實現(xiàn)利用,用焦煤的干燥冷卻來替代傳統(tǒng)的淬火方式,這是最科學(xué)最經(jīng)濟(jì)方便的。這篇論文的目的是主要討論焦?fàn)t干燥裝置的主要型號和一些參數(shù)對能源節(jié)約的影響做出的一些詳細(xì)討論,特別是生產(chǎn)蒸汽的溫度和壓力,還有這些設(shè)備的能源效率。簡介1.1可用能源一個系統(tǒng)環(huán)境組合的能源,當(dāng)這個系統(tǒng)通過可逆程序帶來一種不受限的平衡的情形(熱能,機(jī)械能和化學(xué)能)時,通常被定義為可做功,僅僅受限于環(huán)境在一致常溫、常壓和在熱力學(xué)平衡中的物質(zhì)構(gòu)成。盡管意義十分不同,化學(xué)能不同于輕微的低價熱能,這在[1,2]中會被討論。這個化學(xué)能一般在高價和低價的熱量中間,但是更靠近高價熱能一些。專業(yè)術(shù)語cp常壓下的熱能[kJ/(kgK)]Ex內(nèi)能[kJ]Exu可利用能量[kJ]ex特定內(nèi)能[kJ/kg]Gv流動速度[m3(nTp)/h]Gv*特定流動速度[m3(nTp)/tdrycoke]i特定焓[kJ/kg]p壓力[bar]s特定熵[kJ/(kgK]T溫度[C,K]To環(huán)境溫度[C,K]v特定體積[m3/kg]Ф能源率[dimensionless]雖然如此,化學(xué)能不適合用來量化燃料的技術(shù)價值的兩個原因:(i)先要考慮到熱量轉(zhuǎn)化,說明不可逆燃燒過程是必要的,在很大程度上減少了不同方式中各種燃料的能量。(ii)這個相應(yīng)不可逆膨脹過程的一些成分(特別是二氧化碳)減少了大氣層的部分壓力,其是不能從燃?xì)庵蝎@得,因為其隱藏在能量定義中。另外,這個過程燃料型號不同。因此,Bisio[3]定義為可利用能量,因為能量價值隨著絕熱燃料用過量空氣率(e.g.,1.1)減去混合燃料不可逆中的能量損失,然后大氣達(dá)到大氣壓力和溫度??衫媚苈实慕o料低價熱能是被認(rèn)為優(yōu)勢因素。這個因素總是少于某個,并且隨著燃料的增加,科技和經(jīng)濟(jì)價值也增加?!翱衫媚堋边@個參數(shù),被定義和應(yīng)用在[3],適合電站的檢查,利用燃料混合的目的是減少總?cè)剂系南?,主要的這個參數(shù)是更重要的組成之一。1.2焦煤爐的能源利用被用于焦煤爐的燃料化學(xué)能,總和為2500-3200MJ/tdrycoal。這個能量被分解為多種有效熱能,從設(shè)備中以多種形式排放出去:熾熱焦的熱能(43-48%)焦煤燃?xì)獾臒犰剩?4-30%)廢氣的熱能(10-18%)導(dǎo)磁系數(shù),焦煤爐的外部表面的對流傳熱和輻射傳熱,還有多種損失(10-17%)1973年的石油危機(jī)創(chuàng)造了一個朝著消費新想法和能源利用合理性的強(qiáng)大動力,特別是在高工業(yè)化程度的城市被限制在本土的能源。同時,世界也通過其注意力增加了對環(huán)境問題的重視。熾熱焦的可利用熱能在許多論文中處理過。通常,在焦炭技術(shù)中,焦炭被通過在淬火塔中散布水的方式來冷卻。在近幾年,多種型號的干燥冷卻電站允許恢復(fù)熾熱焦的熱能的將近80%。最可能循環(huán)利用的能量如下:蒸汽和電能的生產(chǎn)焦炭煤的預(yù)熱空間熱焦煤氣體的熱能是上面清單上的第二大能量,目前很少被利用。然而,多種研究關(guān)于可利用廢能被實施,并且其技術(shù)最近在日本商業(yè)化。燃燒排出的氣體的熱能是通過一個大容量的蓄熱器被利用來預(yù)熱空氣和燃料氣體混合物的。因此廢氣的溫度是減少的,大約200°C。近來,從廢氣中進(jìn)一步重復(fù)利用熱量,據(jù)報道是把熱力管安裝在煙道里。多種熱能是從焦煤爐體外表面浪費的,通過對焦煤爐體的加密和更好的熱孤立系統(tǒng)可以減少。在下面的文章中,焦煤爐的主要型號的能源重復(fù)利用將會通過考慮對比。1.3環(huán)境保護(hù)隨著能源節(jié)約和重復(fù)利用的難題,最近這些年的特點是通過增加對大氣和被工業(yè)排放和家庭廢物的水污染預(yù)防。在所有的發(fā)展中國家中控制大氣污染的工作被實施。根據(jù)Zaichenkoetal,作為一個環(huán)境保護(hù)措施的結(jié)果,投資和焦炭的花費增加到了15%。然而,如果把工人們通過大氣污染的不利影響引起的損失也計算在內(nèi)的話,裝置之所以高效能是其設(shè)計因素是維持純凈的空氣。在任何情形下,顯而易見一個環(huán)境設(shè)備是特別吸引人的,除了環(huán)境優(yōu)勢,焦煤冷卻設(shè)備和能源的重復(fù)利用是關(guān)聯(lián)的,甚至投資花費更高,并且不是僅僅通過能源節(jié)約調(diào)整的。焦炭干淬火2.1能源重復(fù)利用的方法和節(jié)約從焦?fàn)t輸出的焦煤熾熱焦炭通過惰性氣體再生熱能的方法可以追溯到20世紀(jì)初。第一個特殊設(shè)計的工廠,在20世紀(jì)20年代至30年代在美國和歐洲被SulzerBrothers(Winterthur,Switzerland)實施。然而,干淬火比是淬火投資花費更大,在能源非常便宜的時期分期付款是困難的。結(jié)果,放棄了干淬火。在20世紀(jì)60年代,一則新聞引起了關(guān)注,在USSR,干燥冷卻設(shè)備基本是跟隨Sulzer的設(shè)計,最初被建設(shè)的目的是防止焦炭在冬天凍結(jié),就像是濕淬火。根據(jù)SovietGiprokoks的設(shè)計,這個設(shè)備在各個國家被建設(shè),如下圖1。溫度大約1100°C的紅色焦炭從爐體被推出來,A是流量集裝箱。裝載流量集裝箱被運往干燥冷卻站。B通過吊車提升。C通過爐料系統(tǒng)被卸載,D進(jìn)入煉油爐膛。E然后,熱的焦炭被轉(zhuǎn)運到冷卻爐。F在小爐里,離開冷卻爐掌控系統(tǒng)。G焦炭流量,溫度大概200°C,在輸送帶上。H焦炭通過主要由氮氣組成的循環(huán)氣體被凍結(jié)并且通過主鼓風(fēng)機(jī)移動。I在鍋爐里這個氣體轉(zhuǎn)換成熱能。N產(chǎn)生過熱蒸汽。O壓力升到100bar.在進(jìn)入鍋爐前,在粗除塵器中氣體被刷洗。J去除粗糙的焦炭灰塵顆粒來保護(hù)鍋爐表面受侵蝕。離開鍋爐后,氣體蒸氣通過細(xì)除塵器。K在優(yōu)良的除塵器里被刷洗出來。圖1Giprokoks的焦炭干燥冷卻方法:A引入焦炭;B焦炭集裝箱;C吊車;D裝料系統(tǒng);E煉油爐膛;F焦炭冷卻室;G卸料系統(tǒng);H焦炭輸送帶;I主鼓風(fēng)機(jī);J粗除塵器;K細(xì)除塵器;L備用的鼓風(fēng)機(jī);M給水泵;N蒸發(fā)器;O蒸汽排出口1983年的一個干燥冷卻電站開始在德國被操作,如圖2所示。它的主要特征是熱能的1/3被直接從焦炭轉(zhuǎn)換成蒸餾水,還有2/3仍然通過惰性氣體保留。優(yōu)勢是少量的循環(huán)氣體相應(yīng)地有少量的鼓風(fēng)機(jī)電能消耗,并且有較大量的能源重獲。冷凍墻在冷卻室里呈現(xiàn)該廠鑒定的結(jié)果。在德國,發(fā)展了一種焦炭干燥冷卻和煤的再熱相結(jié)合的設(shè)備。這個系統(tǒng)主要能源節(jié)約代替了低價能源重復(fù)利用,并且它是熱力學(xué)首選的。另外,焦炭的質(zhì)量方面和增加輸出量是眾所周知的優(yōu)點,也被認(rèn)證了。在焦炭電廠里這個完整的閉合系統(tǒng)認(rèn)可對環(huán)境改善有重大意義,用一種實際完整的方法避免灰塵進(jìn)入大氣。Jung[13]認(rèn)為使用水氣體(H2+CO)作為便利的熱轉(zhuǎn)換流體。甚至,水氣能比散布比氮氣多3倍的熱量,并且允許我們減少至少50%的鍋爐表面?!癕etalProducing”[10]是一個匿名筆記,它在下面強(qiáng)調(diào)了最便捷的從焦炭干淬火中能源的重獲的使用方法(至少在美國):煤的干燥和加熱的補(bǔ)充水在焦煤電站中為鍋爐提供蒸汽。甚至,當(dāng)焦煤設(shè)備運行時能源是可利用的,當(dāng)然是在它必須的時候。另外,這些能源的質(zhì)量相當(dāng)?shù)睾谩?.2最佳蒸汽溫度和壓力的研究2.2.1概述內(nèi)能和內(nèi)能的分析如圖3內(nèi)能和內(nèi)能流動圖解報告了一個典型的焦煤干燥冷卻站,進(jìn)口焦炭的溫度=1050°C,出口焦炭的溫度=200°C。圖解是有用的,然而,僅僅能源流動顯現(xiàn)了多種能源的有效價值。圖3焓(1)和內(nèi)能(2)的流動圖表:A入口焦炭熱焓(90.52%);B鼓風(fēng)機(jī)焓值(2.15%);C焦炭和殘渣通過蒸餾氣體燃燒焓值(5.03%);D入口水焓值(2.3%);E蒸汽焓值(84%);F廢氣焓值(0.8%);G表面損失焓值(4%);H出口焦炭熱焓(11.2%);A’入口焦炭內(nèi)能(89.59%);B’鼓風(fēng)機(jī)內(nèi)能(3.68%);C’焦炭和殘渣通過蒸餾氣體燃燒內(nèi)能(6.73%);E’蒸汽內(nèi)能(44.5%);I’內(nèi)能損失(55.5%)從圖3附注有這樣一個裝置它可能從熾熱的焦炭熱能中恢復(fù)大約44%的有效內(nèi)能,相當(dāng)有大約20%的入口焦炭的有效內(nèi)能。由于焦炭干淬火的相對的低效能,引起了對一切參
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中藥天花粉簡介
- 城市管理執(zhí)法辦法城市保護(hù)篇
- 2024年09月山西2024屆中國民生銀行太原分行秋季校園招考筆試歷年參考題庫附帶答案詳解
- 2024年09月山東2024年興業(yè)銀行濟(jì)南分行校園招考筆試歷年參考題庫附帶答案詳解
- 2024年09月四川中信銀行四川社會招考(97)筆試歷年參考題庫附帶答案詳解
- 2024年09月四川2024屆上海銀行成都分行秋季校園招考筆試歷年參考題庫附帶答案詳解
- 2024年09月北京民生銀行信用卡中心社會招考(97)筆試歷年參考題庫附帶答案詳解
- 2024年09月全國2024年中國銀行中銀基金管理校園招考筆試歷年參考題庫附帶答案詳解
- 黑龍江省哈爾濱市尚志市田家炳中學(xué)2025屆中考一模生物試題含解析
- 2024年09月2024年中國建設(shè)銀行北京市分行校園招聘(500人)筆試歷年參考題庫附帶答案詳解
- JGJ/T235-2011建筑外墻防水工程技術(shù)規(guī)程
- 殘疾軍人新退休政策
- T-HNKCSJ 002-2023 河南省地源熱泵系統(tǒng)工程技術(shù)規(guī)范
- 人教版數(shù)學(xué)三年級下冊《簡單的小數(shù)加、減法》說課稿(附反思、板書)課件
- 漁業(yè)資源基本術(shù)語-編制說明
- 酒店住宿水單模板-皇冠假日
- 中醫(yī)優(yōu)勢病種優(yōu)化方案及總結(jié)
- 春節(jié)期間值班值守方案
- 2021-2022學(xué)年貴州省貴陽市花溪區(qū)人教版五年級上冊期末測試數(shù)學(xué)試卷
- 基礎(chǔ)寫作(小學(xué)教育專業(yè))全套教學(xué)課件
- 戶口未婚改已婚委托書
評論
0/150
提交評論