2024屆廣東省惠州市第三中學(xué)高三數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第1頁(yè)
2024屆廣東省惠州市第三中學(xué)高三數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第2頁(yè)
2024屆廣東省惠州市第三中學(xué)高三數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第3頁(yè)
2024屆廣東省惠州市第三中學(xué)高三數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第4頁(yè)
2024屆廣東省惠州市第三中學(xué)高三數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題含解析_第5頁(yè)
已閱讀5頁(yè),還剩14頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2024屆廣東省惠州市第三中學(xué)高三數(shù)學(xué)第一學(xué)期期末教學(xué)質(zhì)量檢測(cè)試題注意事項(xiàng):1.答題前,考生先將自己的姓名、準(zhǔn)考證號(hào)填寫清楚,將條形碼準(zhǔn)確粘貼在考生信息條形碼粘貼區(qū)。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請(qǐng)按照題號(hào)順序在各題目的答題區(qū)域內(nèi)作答,超出答題區(qū)域書寫的答案無(wú)效;在草稿紙、試題卷上答題無(wú)效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準(zhǔn)使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知為虛數(shù)單位,若復(fù)數(shù),,則A. B.C. D.2.已知類產(chǎn)品共兩件,類產(chǎn)品共三件,混放在一起,現(xiàn)需要通過檢測(cè)將其區(qū)分開來,每次隨機(jī)檢測(cè)一件產(chǎn)品,檢測(cè)后不放回,直到檢測(cè)出2件類產(chǎn)品或者檢測(cè)出3件類產(chǎn)品時(shí),檢測(cè)結(jié)束,則第一次檢測(cè)出類產(chǎn)品,第二次檢測(cè)出類產(chǎn)品的概率為()A. B. C. D.3.胡夫金字塔是底面為正方形的錐體,四個(gè)側(cè)面都是相同的等腰三角形.研究發(fā)現(xiàn),該金字塔底面周長(zhǎng)除以倍的塔高,恰好為祖沖之發(fā)現(xiàn)的密率.設(shè)胡夫金字塔的高為,假如對(duì)胡夫金字塔進(jìn)行亮化,沿其側(cè)棱和底邊布設(shè)單條燈帶,則需要燈帶的總長(zhǎng)度約為A. B.C. D.4.已知雙曲線C:=1(a>0,b>0)的右焦點(diǎn)為F,過原點(diǎn)O作斜率為的直線交C的右支于點(diǎn)A,若|OA|=|OF|,則雙曲線的離心率為()A. B. C.2 D.+15.已知,若則實(shí)數(shù)的取值范圍是()A. B. C. D.6.已知,則的大小關(guān)系為()A. B. C. D.7.過拋物線的焦點(diǎn)作直線交拋物線于兩點(diǎn),若線段中點(diǎn)的橫坐標(biāo)為3,且,則拋物線的方程是()A. B. C. D.8.已知拋物線和點(diǎn),直線與拋物線交于不同兩點(diǎn),,直線與拋物線交于另一點(diǎn).給出以下判斷:①直線與直線的斜率乘積為;②軸;③以為直徑的圓與拋物線準(zhǔn)線相切.其中,所有正確判斷的序號(hào)是()A.①②③ B.①② C.①③ D.②③9.《易·系辭上》有“河出圖,洛出書”之說,河圖、洛書是中華文化,陰陽(yáng)術(shù)數(shù)之源,其中河圖的排列結(jié)構(gòu)是一、六在后,二、七在前,三、八在左,四、九在右,五、十背中,如圖,白圈為陽(yáng)數(shù),黑點(diǎn)為陰數(shù),若從陰數(shù)和陽(yáng)數(shù)中各取一數(shù),則其差的絕對(duì)值為5的概率為A. B. C. D.10.半徑為2的球內(nèi)有一個(gè)內(nèi)接正三棱柱,則正三棱柱的側(cè)面積的最大值為()A. B. C. D.11.已知命題:任意,都有;命題:,則有.則下列命題為真命題的是()A. B. C. D.12.已知數(shù)列的首項(xiàng),且,其中,,,下列敘述正確的是()A.若是等差數(shù)列,則一定有 B.若是等比數(shù)列,則一定有C.若不是等差數(shù)列,則一定有 D.若不是等比數(shù)列,則一定有二、填空題:本題共4小題,每小題5分,共20分。13.函數(shù)的最小正周期為________;若函數(shù)在區(qū)間上單調(diào)遞增,則的最大值為________.14.不等式的解集為________15.的展開式中項(xiàng)的系數(shù)為_______.16.已知數(shù)列滿足:,,若對(duì)任意的正整數(shù)均有,則實(shí)數(shù)的最大值是_____.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù)(1)已知直線:,:.若直線與關(guān)于對(duì)稱,又函數(shù)在處的切線與垂直,求實(shí)數(shù)的值;(2)若函數(shù),則當(dāng),時(shí),求證:①;②.18.(12分)橢圓:()的離心率為,它的四個(gè)頂點(diǎn)構(gòu)成的四邊形面積為.(1)求橢圓的方程;(2)設(shè)是直線上任意一點(diǎn),過點(diǎn)作圓的兩條切線,切點(diǎn)分別為,,求證:直線恒過一個(gè)定點(diǎn).19.(12分)已知數(shù)列的前項(xiàng)和為,且滿足,各項(xiàng)均為正數(shù)的等比數(shù)列滿足(1)求數(shù)列的通項(xiàng)公式;(2)若,求數(shù)列的前項(xiàng)和20.(12分)在中,.(Ⅰ)求角的大??;(Ⅱ)若,,求的值.21.(12分)已知公差不為零的等差數(shù)列的前n項(xiàng)和為,,是與的等比中項(xiàng).(1)求;(2)設(shè)數(shù)列滿足,,求數(shù)列的通項(xiàng)公式.22.(10分)如圖,在四面體中,.(1)求證:平面平面;(2)若,求四面體的體積.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、B【解析】

由可得,所以,故選B.2、D【解析】

根據(jù)分步計(jì)數(shù)原理,由古典概型概率公式可得第一次檢測(cè)出類產(chǎn)品的概率,不放回情況下第二次檢測(cè)出類產(chǎn)品的概率,即可得解.【詳解】類產(chǎn)品共兩件,類產(chǎn)品共三件,則第一次檢測(cè)出類產(chǎn)品的概率為;不放回情況下,剩余4件產(chǎn)品,則第二次檢測(cè)出類產(chǎn)品的概率為;故第一次檢測(cè)出類產(chǎn)品,第二次檢測(cè)出類產(chǎn)品的概率為;故選:D.【點(diǎn)睛】本題考查了分步乘法計(jì)數(shù)原理的應(yīng)用,古典概型概率計(jì)算公式的應(yīng)用,屬于基礎(chǔ)題.3、D【解析】

設(shè)胡夫金字塔的底面邊長(zhǎng)為,由題可得,所以,該金字塔的側(cè)棱長(zhǎng)為,所以需要燈帶的總長(zhǎng)度約為,故選D.4、B【解析】

以為圓心,以為半徑的圓的方程為,聯(lián)立,可求出點(diǎn),則,整理計(jì)算可得離心率.【詳解】解:以為圓心,以為半徑的圓的方程為,聯(lián)立,取第一象限的解得,即,則,整理得,則(舍去),,.故選:B.【點(diǎn)睛】本題考查雙曲線離心率的求解,考查學(xué)生的計(jì)算能力,是中檔題.5、C【解析】

根據(jù),得到有解,則,得,,得到,再根據(jù),有,即,可化為,根據(jù),則的解集包含求解,【詳解】因?yàn)?,所以有解,即有解,所以,得,,所以,又因?yàn)椋?,即,可化為,因?yàn)?,所以的解集包含,所以或,解得,故選:C【點(diǎn)睛】本題主要考查一元二次不等式的解法及集合的關(guān)系的應(yīng)用,還考查了運(yùn)算求解的能力,屬于中檔題,6、A【解析】

根據(jù)指數(shù)函數(shù)的單調(diào)性,可得,再利用對(duì)數(shù)函數(shù)的單調(diào)性,將與對(duì)比,即可求出結(jié)論.【詳解】由題知,,則.故選:A.【點(diǎn)睛】本題考查利用函數(shù)性質(zhì)比較大小,注意與特殊數(shù)的對(duì)比,屬于基礎(chǔ)題..7、B【解析】

利用拋物線的定義可得,,把線段AB中點(diǎn)的橫坐標(biāo)為3,代入可得p值,然后可得出拋物線的方程.【詳解】設(shè)拋物線的焦點(diǎn)為F,設(shè)點(diǎn),由拋物線的定義可知,線段AB中點(diǎn)的橫坐標(biāo)為3,又,,可得,所以拋物線方程為.故選:B.【點(diǎn)睛】本題考查拋物線的定義、標(biāo)準(zhǔn)方程,以及簡(jiǎn)單性質(zhì)的應(yīng)用,利用拋物線的定義是解題的關(guān)鍵.8、B【解析】

由題意,可設(shè)直線的方程為,利用韋達(dá)定理判斷第一個(gè)結(jié)論;將代入拋物線的方程可得,,從而,,進(jìn)而判斷第二個(gè)結(jié)論;設(shè)為拋物線的焦點(diǎn),以線段為直徑的圓為,則圓心為線段的中點(diǎn).設(shè),到準(zhǔn)線的距離分別為,,的半徑為,點(diǎn)到準(zhǔn)線的距離為,顯然,,三點(diǎn)不共線,進(jìn)而判斷第三個(gè)結(jié)論.【詳解】解:由題意,可設(shè)直線的方程為,代入拋物線的方程,有.設(shè)點(diǎn),的坐標(biāo)分別為,,則,.所.則直線與直線的斜率乘積為.所以①正確.將代入拋物線的方程可得,,從而,,根據(jù)拋物線的對(duì)稱性可知,,兩點(diǎn)關(guān)于軸對(duì)稱,所以直線軸.所以②正確.如圖,設(shè)為拋物線的焦點(diǎn),以線段為直徑的圓為,則圓心為線段的中點(diǎn).設(shè),到準(zhǔn)線的距離分別為,,的半徑為,點(diǎn)到準(zhǔn)線的距離為,顯然,,三點(diǎn)不共線,則.所以③不正確.故選:B.【點(diǎn)睛】本題主要考查拋物線的定義與幾何性質(zhì)、直線與拋物線的位置關(guān)系等基礎(chǔ)知識(shí),考查運(yùn)算求解能力、推理論證能力和創(chuàng)新意識(shí),考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,屬于難題.9、A【解析】

陽(yáng)數(shù):,陰數(shù):,然后分析陰數(shù)和陽(yáng)數(shù)差的絕對(duì)值為5的情況數(shù),最后計(jì)算相應(yīng)概率.【詳解】因?yàn)殛?yáng)數(shù):,陰數(shù):,所以從陰數(shù)和陽(yáng)數(shù)中各取一數(shù)差的絕對(duì)值有:個(gè),滿足差的絕對(duì)值為5的有:共個(gè),則.故選:A.【點(diǎn)睛】本題考查實(shí)際背景下古典概型的計(jì)算,難度一般.古典概型的概率計(jì)算公式:.10、B【解析】

設(shè)正三棱柱上下底面的中心分別為,底面邊長(zhǎng)與高分別為,利用,可得,進(jìn)一步得到側(cè)面積,再利用基本不等式求最值即可.【詳解】如圖所示.設(shè)正三棱柱上下底面的中心分別為,底面邊長(zhǎng)與高分別為,則,在中,,化為,,,當(dāng)且僅當(dāng)時(shí)取等號(hào),此時(shí).故選:B.【點(diǎn)睛】本題考查正三棱柱與球的切接問題,涉及到基本不等式求最值,考查學(xué)生的計(jì)算能力,是一道中檔題.11、B【解析】

先分別判斷命題真假,再由復(fù)合命題的真假性,即可得出結(jié)論.【詳解】為真命題;命題是假命題,比如當(dāng),或時(shí),則不成立.則,,均為假.故選:B【點(diǎn)睛】本題考查復(fù)合命題的真假性,判斷簡(jiǎn)單命題的真假是解題的關(guān)鍵,屬于基礎(chǔ)題.12、C【解析】

根據(jù)等差數(shù)列和等比數(shù)列的定義進(jìn)行判斷即可.【詳解】A:當(dāng)時(shí),,顯然符合是等差數(shù)列,但是此時(shí)不成立,故本說法不正確;B:當(dāng)時(shí),,顯然符合是等比數(shù)列,但是此時(shí)不成立,故本說法不正確;C:當(dāng)時(shí),因此有常數(shù),因此是等差數(shù)列,因此當(dāng)不是等差數(shù)列時(shí),一定有,故本說法正確;D:當(dāng)時(shí),若時(shí),顯然數(shù)列是等比數(shù)列,故本說法不正確.故選:C【點(diǎn)睛】本題考查了等差數(shù)列和等比數(shù)列的定義,考查了推理論證能力,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

直接計(jì)算得到答案,根據(jù)題意得到,,解得答案.【詳解】,故,當(dāng)時(shí),,故,解得.故答案為:;.【點(diǎn)睛】本題考查了三角函數(shù)的周期和單調(diào)性,意在考查學(xué)生對(duì)于三角函數(shù)知識(shí)的綜合應(yīng)用.14、【解析】

通過平方,將無(wú)理不等式化為有理不等式求解即可。【詳解】由得,解得,所以解集是。【點(diǎn)睛】本題主要考查無(wú)理不等式的解法。15、40【解析】

根據(jù)二項(xiàng)定理展開式,求得r的值,進(jìn)而求得系數(shù).【詳解】根據(jù)二項(xiàng)定理展開式的通項(xiàng)式得所以,解得所以系數(shù)【點(diǎn)睛】本題考查了二項(xiàng)式定理的簡(jiǎn)單應(yīng)用,屬于基礎(chǔ)題.16、2【解析】

根據(jù)遞推公式可考慮分析,再累加求出關(guān)于關(guān)于參數(shù)的關(guān)系,根據(jù)表達(dá)式的取值分析出,再用數(shù)學(xué)歸納法證明滿足條件即可.【詳解】因?yàn)?累加可得.若,注意到當(dāng)時(shí),,不滿足對(duì)任意的正整數(shù)均有.所以.當(dāng)時(shí),證明:對(duì)任意的正整數(shù)都有.當(dāng)時(shí),成立.假設(shè)當(dāng)時(shí)結(jié)論成立,即,則,即結(jié)論對(duì)也成立.由數(shù)學(xué)歸納法可知,對(duì)任意的正整數(shù)都有.綜上可知,所求實(shí)數(shù)的最大值是2.故答案為:2【點(diǎn)睛】本題主要考查了根據(jù)數(shù)列的遞推公式求解參數(shù)最值的問題,需要根據(jù)遞推公式累加求解,同時(shí)注意結(jié)合參數(shù)的范圍問題進(jìn)行分析.屬于難題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2)①證明見解析②證明見解析【解析】

(1)首先根據(jù)直線關(guān)于直線對(duì)稱的直線的求法,求得的方程及其斜率.根據(jù)函數(shù)在處的切線與垂直列方程,解方程求得的值.(2)①構(gòu)造函數(shù),利用的導(dǎo)函數(shù)證得當(dāng)時(shí),,由此證得.②由①知成立,整理得成立.利用構(gòu)造函數(shù)法證得,由此得到,即,化簡(jiǎn)后得到.【詳解】(1)由解得必過與的交點(diǎn).在上取點(diǎn),易得點(diǎn)關(guān)于對(duì)稱的點(diǎn)為,即為直線,所以的方程為,即,其斜率為.又因?yàn)椋?,,由題意,解得.(2)因?yàn)椋?①令,則,則,且,,時(shí),,單調(diào)遞減;時(shí),,單調(diào)遞增.因?yàn)?,所以,因?yàn)椋源嬖?,使時(shí),,單調(diào)遞增;時(shí),,單調(diào)遞減;時(shí),,單調(diào)遞增.又,所以時(shí),,即,所以,即成立.②由①知成立,即有成立.令,即.所以時(shí),,單調(diào)遞增;時(shí),,單調(diào)遞減,所以,即,因?yàn)?,所以,所以時(shí),,即時(shí),.【點(diǎn)睛】本小題考查函數(shù)圖象的對(duì)稱性,利用導(dǎo)數(shù)求切線的斜率,利用導(dǎo)數(shù)證明不等式等基礎(chǔ)知識(shí);考查學(xué)生分析問題,解決問題的能力,推理與運(yùn)算求解能力,轉(zhuǎn)化與化歸思想,數(shù)形結(jié)合思想和應(yīng)用意識(shí).18、(1);(2)證明見解析.【解析】

(1)根據(jù)橢圓的基本性質(zhì)列出方程組,即可得出橢圓方程;(2)設(shè)點(diǎn),,,由,,結(jié)合斜率公式化簡(jiǎn)得出,,即,滿足,由的任意性,得出直線恒過一個(gè)定點(diǎn).【詳解】(1)依題意得,解得即橢圓:;(2)設(shè)點(diǎn),,其中,由,得,即,注意到,于是,因此,滿足由的任意性知,,,即直線恒過一個(gè)定點(diǎn).【點(diǎn)睛】本題主要考查了求橢圓的方程,直線過定點(diǎn)問題,屬于中檔題.19、(1);(2)【解析】

(1)由化為,利用數(shù)列的通項(xiàng)公式和前n項(xiàng)和的關(guān)系,得到是首項(xiàng)為,公差為的等差數(shù)列求解.(2)由(1)得到,再利用錯(cuò)位相減法求解.【詳解】(1)可以化為,,,,又時(shí),數(shù)列從開始成等差數(shù)列,,代入得是首項(xiàng)為,公差為的等差數(shù)列,,.(2)由(1)得,,,兩式相減得,,.【點(diǎn)睛】本題主要考查數(shù)列的通項(xiàng)公式和前n項(xiàng)和的關(guān)系和錯(cuò)位相減法求和,還考查了運(yùn)算求解的能力,屬于中檔題.20、(1);(2).【解析】試題分析:(1)由正弦定理得到.消去公因式得到所以.進(jìn)而得到角A;(2)結(jié)合三角形的面積公式,和余弦定理得到,聯(lián)立兩式得到.解析:(I)因?yàn)?,所以,由正弦定理,得.又因?yàn)?,,所以.又因?yàn)?,所以.(II)由,得,由余弦定理,得,即,因?yàn)椋獾?因?yàn)?,所?21、(1);(2).【解析】

(1)根據(jù)題意,建立首項(xiàng)和公差的方程組,通過基本量即可寫出前項(xiàng)和;(2)由(1)中所求,結(jié)合累加法求得.【詳解】(1)由題意可得即又因?yàn)椋?,所?(2)由條件及(1)可得.由已知得,所以.又滿足上式,所以【點(diǎn)睛】本題考查等

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論