2024屆江蘇省無錫市太湖格致中學(xué)中考一模數(shù)學(xué)試題含解析_第1頁
2024屆江蘇省無錫市太湖格致中學(xué)中考一模數(shù)學(xué)試題含解析_第2頁
2024屆江蘇省無錫市太湖格致中學(xué)中考一模數(shù)學(xué)試題含解析_第3頁
2024屆江蘇省無錫市太湖格致中學(xué)中考一模數(shù)學(xué)試題含解析_第4頁
2024屆江蘇省無錫市太湖格致中學(xué)中考一模數(shù)學(xué)試題含解析_第5頁
已閱讀5頁,還剩24頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

2024屆江蘇省無錫市太湖格致中學(xué)中考一模數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號(hào)填寫在答題卡上。2.回答選擇題時(shí),選出每小題答案后,用鉛筆把答題卡上對應(yīng)題目的答案標(biāo)號(hào)涂黑,如需改動(dòng),用橡皮擦干凈后,再選涂其它答案標(biāo)號(hào)?;卮鸱沁x擇題時(shí),將答案寫在答題卡上,寫在本試卷上無效。3.考試結(jié)束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1.如圖,兩個(gè)等直徑圓柱構(gòu)成如圖所示的T形管道,則其俯視圖正確的是()A.B.C.D.2.罰球是籃球比賽中得分的一個(gè)組成部分,罰球命中率的高低對籃球比賽的結(jié)果影響很大.如圖是對某球員罰球訓(xùn)練時(shí)命中情況的統(tǒng)計(jì):下面三個(gè)推斷:①當(dāng)罰球次數(shù)是500時(shí),該球員命中次數(shù)是411,所以“罰球命中”的概率是0.822;②隨著罰球次數(shù)的增加,“罰球命中”的頻率總在0.812附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)該球員“罰球命中”的概率是0.812;③由于該球員“罰球命中”的頻率的平均值是0.1,所以“罰球命中”的概率是0.1.其中合理的是()A.① B.② C.①③ D.②③3.已知⊙O及⊙O外一點(diǎn)P,過點(diǎn)P作出⊙O的一條切線(只有圓規(guī)和三角板這兩種工具),以下是甲、乙兩同學(xué)的作業(yè):甲:①連接OP,作OP的垂直平分線l,交OP于點(diǎn)A;②以點(diǎn)A為圓心、OA為半徑畫弧、交⊙O于點(diǎn)M;③作直線PM,則直線PM即為所求(如圖1).乙:①讓直角三角板的一條直角邊始終經(jīng)過點(diǎn)P;②調(diào)整直角三角板的位置,讓它的另一條直角邊過圓心O,直角頂點(diǎn)落在⊙O上,記這時(shí)直角頂點(diǎn)的位置為點(diǎn)M;③作直線PM,則直線PM即為所求(如圖2).對于兩人的作業(yè),下列說法正確的是()A.甲乙都對 B.甲乙都不對C.甲對,乙不對 D.甲不對,已對4.已知,用尺規(guī)作圖的方法在上確定一點(diǎn),使,則符合要求的作圖痕跡是()A. B.C. D.5.如圖圖形中是中心對稱圖形的是()A. B.C. D.6.如圖,已知雙曲線經(jīng)過直角三角形OAB斜邊OA的中點(diǎn)D,且與直角邊AB相交于點(diǎn)C.若點(diǎn)A的坐標(biāo)為(,4),則△AOC的面積為A.12 B.9 C.6 D.47.下列圖形中,是軸對稱圖形但不是中心對稱圖形的是()A.直角梯形B.平行四邊形C.矩形D.正五邊形8.某排球隊(duì)名場上隊(duì)員的身高(單位:)是:,,,,,.現(xiàn)用一名身高為的隊(duì)員換下場上身高為的隊(duì)員,與換人前相比,場上隊(duì)員的身高()A.平均數(shù)變小,方差變小 B.平均數(shù)變小,方差變大C.平均數(shù)變大,方差變小 D.平均數(shù)變大,方差變大9.二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖,下列結(jié)論正確的是()A.a(chǎn)<0 B.b2-4ac<0 C.當(dāng)-1<x<3時(shí),y>0 D.-=110.如圖,正方形ABCD的頂點(diǎn)C在正方形AEFG的邊AE上,AB=2,AE=,則點(diǎn)G到BE的距離是()A. B. C. D.11.已知,C是線段AB的黃金分割點(diǎn),AC<BC,若AB=2,則BC=()A.3﹣ B.(+1) C.﹣1 D.(﹣1)12.下列計(jì)算正確的是()A.2x2-3x2=x2 B.x+x=x2 C.-(x-1)=-x+1 D.3+x=3x二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13.如圖,矩形OABC的邊OA,OC分別在x軸,y軸上,點(diǎn)B在第一象限,點(diǎn)D在邊BC上,且∠AOD=30°,四邊形OA′B′D與四邊形OABD關(guān)于直線OD對稱(點(diǎn)A′和A,點(diǎn)B′和B分別對應(yīng)).若AB=2,反比例函數(shù)y=(k≠0)的圖象恰好經(jīng)過A′,B,則k的值為_____.14.股市規(guī)定:股票每天的漲、跌幅均不超過10%,即當(dāng)漲了原價(jià)的10%后,便不能再漲,叫做漲停;當(dāng)?shù)嗽瓋r(jià)的10%后,便不能再跌,叫做跌停.若一支股票某天跌停,之后兩天時(shí)間又漲回到原價(jià),若這兩天此股票股價(jià)的平均增長率為x,則x滿足的方程是_____.15.若a2+3=2b,則a3﹣2ab+3a=_____.16.當(dāng)a,b互為相反數(shù),則代數(shù)式a2+ab﹣2的值為_____.17.如圖,正方形ABCD的邊長為3,點(diǎn)E,F(xiàn)分別在邊BCCD上,BE=CF=1,小球P從點(diǎn)E出發(fā)沿直線向點(diǎn)F運(yùn)動(dòng),完成第1次與邊的碰撞,每當(dāng)碰到正方形的邊時(shí)反彈,反彈時(shí)反射角等于入射角,則小球P與正方形的邊第2次碰撞到__邊上,小球P與正方形的邊完成第5次碰撞所經(jīng)過的路程為__.18.在直角坐標(biāo)系中,坐標(biāo)軸上到點(diǎn)P(﹣3,﹣4)的距離等于5的點(diǎn)的坐標(biāo)是.三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19.(6分)班級的課外活動(dòng),學(xué)生們都很積極.梁老師在某班對同學(xué)們進(jìn)行了一次關(guān)于“我喜愛的體育項(xiàng)目”的調(diào)査,下面是他通過收集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計(jì)圖.請根據(jù)圖中的信息,解答下列問題:調(diào)查了________名學(xué)生;補(bǔ)全條形統(tǒng)計(jì)圖;在扇形統(tǒng)計(jì)圖中,“乒乓球”部分所對應(yīng)的圓心角度數(shù)為________;學(xué)校將舉辦運(yùn)動(dòng)會(huì),該班將推選5位同學(xué)參加乒乓球比賽,有3位男同學(xué)和2位女同學(xué),現(xiàn)準(zhǔn)備從中選取兩名同學(xué)組成雙打組合,用樹狀圖或列表法求恰好選出一男一女組成混合雙打組合的概率.20.(6分)如圖,AB∥CD,以點(diǎn)A為圓心,小于AC長為半徑作圓弧,分別交AB,AC于E,F(xiàn)兩點(diǎn),再分別以E,F(xiàn)為圓心,大于EF長為半徑作圓弧,兩條圓弧交于點(diǎn)P,連接AP,交CD于點(diǎn)M,若∠ACD=110°,求∠CMA的度數(shù)______.21.(6分)如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與軸相交于點(diǎn),與反比例函數(shù)的圖象相交于點(diǎn),.(1)求一次函數(shù)和反比例函數(shù)的解析式;(2)根據(jù)圖象,直接寫出時(shí),的取值范圍;(3)在軸上是否存在點(diǎn),使為等腰三角形,如果存在,請求點(diǎn)的坐標(biāo),若不存在,請說明理由.22.(8分)如圖,在平行四邊形ABCD中,AD>AB.(1)作出∠ABC的平分線(尺規(guī)作圖,保留作圖痕跡,不寫作法);(2)若(1)中所作的角平分線交AD于點(diǎn)E,AF⊥BE,垂足為點(diǎn)O,交BC于點(diǎn)F,連接EF.求證:四邊形ABFE為菱形.23.(8分)如圖,△ABC內(nèi)接于⊙O,CD是⊙O的直徑,AB與CD交于點(diǎn)E,點(diǎn)P是CD延長線上的一點(diǎn),AP=AC,且∠B=2∠P.(1)求證:PA是⊙O的切線;(2)若PD=,求⊙O的直徑;(3)在(2)的條件下,若點(diǎn)B等分半圓CD,求DE的長.24.(10分)如圖,點(diǎn)A(m,m+1),B(m+1,2m-3)都在反比例函數(shù)的圖象上.(1)求m,k的值;(2)如果M為x軸上一點(diǎn),N為y軸上一點(diǎn),以點(diǎn)A,B,M,N為頂點(diǎn)的四邊形是平行四邊形,試求直線MN的函數(shù)表達(dá)式.25.(10分)如圖,方格紙中每個(gè)小正方形的邊長都是1個(gè)單位長度,在平面直角坐標(biāo)系中的位置如圖所示.(1)直接寫出關(guān)于原點(diǎn)的中心對稱圖形各頂點(diǎn)坐標(biāo):________________________;(2)將繞B點(diǎn)逆時(shí)針旋轉(zhuǎn),畫出旋轉(zhuǎn)后圖形.求在旋轉(zhuǎn)過程中所掃過的圖形的面積和點(diǎn)經(jīng)過的路徑長.26.(12分)圖1和圖2中,優(yōu)弧紙片所在⊙O的半徑為2,AB=2,點(diǎn)P為優(yōu)弧上一點(diǎn)(點(diǎn)P不與A,B重合),將圖形沿BP折疊,得到點(diǎn)A的對稱點(diǎn)A′.發(fā)現(xiàn):(1)點(diǎn)O到弦AB的距離是,當(dāng)BP經(jīng)過點(diǎn)O時(shí),∠ABA′=;(2)當(dāng)BA′與⊙O相切時(shí),如圖2,求折痕的長.拓展:把上圖中的優(yōu)弧紙片沿直徑MN剪裁,得到半圓形紙片,點(diǎn)P(不與點(diǎn)M,N重合)為半圓上一點(diǎn),將圓形沿NP折疊,分別得到點(diǎn)M,O的對稱點(diǎn)A′,O′,設(shè)∠MNP=α.(1)當(dāng)α=15°時(shí),過點(diǎn)A′作A′C∥MN,如圖3,判斷A′C與半圓O的位置關(guān)系,并說明理由;(2)如圖4,當(dāng)α=°時(shí),NA′與半圓O相切,當(dāng)α=°時(shí),點(diǎn)O′落在上.(3)當(dāng)線段NO′與半圓O只有一個(gè)公共點(diǎn)N時(shí),直接寫出β的取值范圍.27.(12分)如圖,在每個(gè)小正方形的邊長為1的網(wǎng)格中,點(diǎn)A,B,M,N均在格點(diǎn)上,P為線段MN上的一個(gè)動(dòng)點(diǎn)(1)MN的長等于_______,(2)當(dāng)點(diǎn)P在線段MN上運(yùn)動(dòng),且使PA2+PB2取得最小值時(shí),請借助網(wǎng)格和無刻度的直尺,在給定的網(wǎng)格中畫出點(diǎn)P的位置,并簡要說明你是怎么畫的,(不要求證明)

參考答案一、選擇題(本大題共12個(gè)小題,每小題4分,共48分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、B【解題分析】試題分析:三視圖就是主視圖(正視圖)、俯視圖、左視圖的總稱.從物體的前面向后面投射所得的視圖稱主視圖(正視圖)——能反映物體的前面形狀;從物體的上面向下面投射所得的視圖稱俯視圖——能反映物體的上面形狀;從物體的左面向右面投射所得的視圖稱左視圖——能反映物體的左面形狀.故選B考點(diǎn):三視圖2、B【解題分析】

根據(jù)圖形和各個(gè)小題的說法可以判斷是否正確,從而解答本題【題目詳解】當(dāng)罰球次數(shù)是500時(shí),該球員命中次數(shù)是411,所以此時(shí)“罰球命中”的頻率是:411÷500=0.822,但“罰球命中”的概率不一定是0.822,故①錯(cuò)誤;隨著罰球次數(shù)的增加,“罰球命中”的頻率總在0.2附近擺動(dòng),顯示出一定的穩(wěn)定性,可以估計(jì)該球員“罰球命中”的概率是0.2.故②正確;雖然該球員“罰球命中”的頻率的平均值是0.1,但是“罰球命中”的概率不是0.1,故③錯(cuò)誤.故選:B.【題目點(diǎn)撥】此題考查了頻數(shù)和頻率的意義,解題的關(guān)鍵在于利用頻率估計(jì)概率.3、A【解題分析】

(1)連接OM,OA,連接OP,作OP的垂直平分線l可得OA=MA=AP,進(jìn)而得到∠O=∠AMO,∠AMP=∠MPA,所以∠OMA+∠AMP=∠O+∠MPA=90°,得出MP是⊙O的切線,(1)直角三角板的一條直角邊始終經(jīng)過點(diǎn)P,它的另一條直角邊過圓心O,直角頂點(diǎn)落在⊙O上,所以∠OMP=90°,得到MP是⊙O的切線.【題目詳解】證明:(1)如圖1,連接OM,OA.∵連接OP,作OP的垂直平分線l,交OP于點(diǎn)A,∴OA=AP.∵以點(diǎn)A為圓心、OA為半徑畫弧、交⊙O于點(diǎn)M;∴OA=MA=AP,∴∠O=∠AMO,∠AMP=∠MPA,∴∠OMA+∠AMP=∠O+∠MPA=90°,∴OM⊥MP,∴MP是⊙O的切線;(1)如圖1.∵直角三角板的一條直角邊始終經(jīng)過點(diǎn)P,它的另一條直角邊過圓心O,直角頂點(diǎn)落在⊙O上,∴∠OMP=90°,∴MP是⊙O的切線.故兩位同學(xué)的作法都正確.故選A.【題目點(diǎn)撥】本題考查了復(fù)雜的作圖,重點(diǎn)是運(yùn)用切線的判定來說明作法的正確性.4、D【解題分析】試題分析:D選項(xiàng)中作的是AB的中垂線,∴PA=PB,∵PB+PC=BC,∴PA+PC=BC.故選D.考點(diǎn):作圖—復(fù)雜作圖.5、B【解題分析】

把一個(gè)圖形繞著某一個(gè)點(diǎn)旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠與原來的圖形重合,那么這個(gè)圖形叫做中心對稱圖形.【題目詳解】解:根據(jù)中心對稱圖形的定義可知只有B選項(xiàng)是中心對稱圖形,故選擇B.【題目點(diǎn)撥】本題考察了中心對稱圖形的含義.6、B【解題分析】∵點(diǎn),是中點(diǎn)∴點(diǎn)坐標(biāo)∵在雙曲線上,代入可得∴∵點(diǎn)在直角邊上,而直線邊與軸垂直∴點(diǎn)的橫坐標(biāo)為-6又∵點(diǎn)在雙曲線∴點(diǎn)坐標(biāo)為∴從而,故選B7、D【解題分析】分析:根據(jù)軸對稱圖形與中心對稱圖形的概念結(jié)合矩形、平行四邊形、直角梯形、正五邊形的性質(zhì)求解.詳解:A.直角梯形不是軸對稱圖形,也不是中心對稱圖形,故此選項(xiàng)錯(cuò)誤;B.平行四邊形不是軸對稱圖形,是中心對稱圖形,故此選項(xiàng)錯(cuò)誤;C.矩形是軸對稱圖形,也是中心對稱圖形,故此選項(xiàng)錯(cuò)誤;D.正五邊形是軸對稱圖形,不是中心對稱圖形,故此選項(xiàng)正確.故選D.點(diǎn)睛:本題考查了軸對稱圖形和中心對稱圖形的概念.軸對稱圖形的關(guān)鍵是尋找對稱軸,圖形沿對稱軸折疊后可重合;中心對稱圖形是要尋找對稱中心,圖形旋轉(zhuǎn)180°后與原圖形重合.8、A【解題分析】分析:根據(jù)平均數(shù)的計(jì)算公式進(jìn)行計(jì)算即可,根據(jù)方差公式先分別計(jì)算出甲和乙的方差,再根據(jù)方差的意義即可得出答案.詳解:換人前6名隊(duì)員身高的平均數(shù)為==188,方差為S2==;換人后6名隊(duì)員身高的平均數(shù)為==187,方差為S2==∵188>187,>,∴平均數(shù)變小,方差變小,故選:A.點(diǎn)睛:本題考查了平均數(shù)與方差的定義:一般地設(shè)n個(gè)數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一組數(shù)據(jù)的波動(dòng)大小,方差越大,波動(dòng)性越大,反之也成立.9、D【解題分析】試題分析:根據(jù)二次函數(shù)的圖象和性質(zhì)進(jìn)行判斷即可.解:∵拋物線開口向上,∴∴A選項(xiàng)錯(cuò)誤,∵拋物線與x軸有兩個(gè)交點(diǎn),∴∴B選項(xiàng)錯(cuò)誤,由圖象可知,當(dāng)-1<x<3時(shí),y<0∴C選項(xiàng)錯(cuò)誤,由拋物線的軸對稱性及與x軸的兩個(gè)交點(diǎn)分別為(-1,0)和(3,0)可知對稱軸為即-=1,∴D選項(xiàng)正確,故選D.10、A【解題分析】

根據(jù)平行線的判定,可得AB與GE的關(guān)系,根據(jù)平行線間的距離相等,可得△BEG與△AEG的關(guān)系,根據(jù)根據(jù)勾股定理,可得AH與BE的關(guān)系,再根據(jù)勾股定理,可得BE的長,根據(jù)三角形的面積公式,可得G到BE的距離.【題目詳解】連接GB、GE,由已知可知∠BAE=45°.又∵GE為正方形AEFG的對角線,∴∠AEG=45°.∴AB∥GE.∵AE=4,AB與GE間的距離相等,∴GE=8,S△BEG=S△AEG=SAEFG=1.過點(diǎn)B作BH⊥AE于點(diǎn)H,∵AB=2,∴BH=AH=.∴HE=3.∴BE=2.設(shè)點(diǎn)G到BE的距離為h.∴S△BEG=?BE?h=×2×h=1.∴h=.即點(diǎn)G到BE的距離為.故選A.【題目點(diǎn)撥】本題主要考查了幾何變換綜合題.涉及正方形的性質(zhì),全等三角形的判定及性質(zhì),等積式及四點(diǎn)共圓周的知識(shí),綜合性強(qiáng).解題的關(guān)鍵是運(yùn)用等積式及四點(diǎn)共圓的判定及性質(zhì)求解.11、C【解題分析】

根據(jù)黃金分割點(diǎn)的定義,知BC為較長線段;則BC=AB,代入數(shù)據(jù)即可得出BC的值.【題目詳解】解:由于C為線段AB=2的黃金分割點(diǎn),且AC<BC,BC為較長線段;

則BC=2×=-1.

故答案為:-1.【題目點(diǎn)撥】本題考查了黃金分割,應(yīng)該識(shí)記黃金分割的公式:較短的線段=原線段的倍,較長的線段=原線段的倍.12、C【解題分析】

根據(jù)合并同類項(xiàng)法則和去括號(hào)法則逐一判斷即可得.【題目詳解】解:A.2x2-3x2=-x2,故此選項(xiàng)錯(cuò)誤;

B.x+x=2x,故此選項(xiàng)錯(cuò)誤;

C.-(x-1)=-x+1,故此選項(xiàng)正確;

D.3與x不能合并,此選項(xiàng)錯(cuò)誤;

故選C.【題目點(diǎn)撥】本題考查了整式的加減,熟練掌握運(yùn)算法則是解題的關(guān)鍵.二、填空題:(本大題共6個(gè)小題,每小題4分,共24分.)13、【解題分析】

解:∵四邊形ABCO是矩形,AB=1,∴設(shè)B(m,1),∴OA=BC=m,∵四邊形OA′B′D與四邊形OABD關(guān)于直線OD對稱,∴OA′=OA=m,∠A′OD=∠AOD=30°∴∠A′OA=60°,過A′作A′E⊥OA于E,∴OE=m,A′E=m,∴A′(m,m),∵反比例函數(shù)(k≠0)的圖象恰好經(jīng)過點(diǎn)A′,B,∴m?m=m,∴m=,∴k=故答案為14、.【解題分析】

股票一次跌停就跌到原來價(jià)格的90%,再從90%的基礎(chǔ)上漲到原來的價(jià)格,且漲幅只能≤10%,設(shè)這兩天此股票股價(jià)的平均增長率為x,每天相對于前一天就上漲到1+x,由此列出方程解答即可.【題目詳解】設(shè)這兩天此股票股價(jià)的平均增長率為x,由題意得(1﹣10%)(1+x)2=1.故答案為:(1﹣10%)(1+x)2=1.【題目點(diǎn)撥】本題主要考查了由實(shí)際問題抽象出一元二次方程,關(guān)鍵是掌握平均變化率的方法,若設(shè)變化前的量為,變化后的量為,平均變化率為,則經(jīng)過兩次變化后的數(shù)量關(guān)系為15、1【解題分析】

利用提公因式法將多項(xiàng)式分解為a(a2+3)-2ab,將a2+3=2b代入可求出其值.【題目詳解】解:∵a2+3=2b,∴a3-2ab+3a=a(a2+3)-2ab=2ab-2ab=1,故答案為1.【題目點(diǎn)撥】本題考查了因式分解的應(yīng)用,利用提公因式法將多項(xiàng)式分解是本題的關(guān)鍵.16、﹣1.【解題分析】分析:由已知易得:a+b=0,再把代數(shù)式a1+ab-1化為為a(a+b)-1即可求得其值了.詳解:∵a與b互為相反數(shù),∴a+b=0,∴a1+ab-1=a(a+b)-1=0-1=-1.故答案為:-1.點(diǎn)睛:知道“互為相反數(shù)的兩數(shù)的和為0”及“能夠把a(bǔ)1+ab-1化為為a(a+b)-1”是正確解答本題的關(guān)鍵.17、AB,【解題分析】

根據(jù)已知中的點(diǎn)E,F(xiàn)的位置,可知入射角的正切值為,通過相似三角形,來確定反射后的點(diǎn)的位置.再由勾股定理就可以求出小球第5次碰撞所經(jīng)過路程的總長度.【題目詳解】根據(jù)已知中的點(diǎn)E,F的位置,可知入射角的正切值為,第一次碰撞點(diǎn)為F,在反射的過程中,根據(jù)入射角等于反射角及平行關(guān)系的三角形的相似可得,第二次碰撞點(diǎn)為G,在AB上,且AG=AB,第三次碰撞點(diǎn)為H,在AD上,且AH=AD,第四次碰撞點(diǎn)為M,在DC上,且DM=DC,第五次碰撞點(diǎn)為N,在AB上,且BN=AB,第六次回到E點(diǎn),BE=BC.由勾股定理可以得出EF=,FG=,GH=,HM=,MN=,NE=,故小球第5次經(jīng)過的路程為:++++=,故答案為AB,.【題目點(diǎn)撥】本題考查了正方形與軸對稱的性質(zhì),解題的關(guān)鍵是熟練的掌握正方形與軸對稱的性質(zhì).18、(0,0)或(0,﹣8)或(﹣6,0)【解題分析】

由P(﹣3,﹣4)可知,P到原點(diǎn)距離為5,而以P點(diǎn)為圓心,5為半徑畫圓,圓經(jīng)過原點(diǎn)分別與x軸、y軸交于另外一點(diǎn),共有三個(gè).【題目詳解】解:∵P(﹣3,﹣4)到原點(diǎn)距離為5,而以P點(diǎn)為圓心,5為半徑畫圓,圓經(jīng)過原點(diǎn)且分別交x軸、y軸于另外兩點(diǎn)(如圖所示),∴故坐標(biāo)軸上到P點(diǎn)距離等于5的點(diǎn)有三個(gè):(0,0)或(0,﹣8)或(﹣6,0).故答案是:(0,0)或(0,﹣8)或(﹣6,0).三、解答題:(本大題共9個(gè)小題,共78分,解答應(yīng)寫出文字說明、證明過程或演算步驟.19、50見解析(3)115.2°(4)【解題分析】試題分析:(1)用最喜歡籃球的人數(shù)除以它所占的百分比可得總共的學(xué)生數(shù);(2)用學(xué)生的總?cè)藬?shù)乘以各部分所占的百分比,可得最喜歡足球的人數(shù)和其他的人數(shù),即可把條形統(tǒng)計(jì)圖補(bǔ)充完整;(3)根據(jù)圓心角的度數(shù)=360o×它所占的百分比計(jì)算;(4)列出樹狀圖可知,共有20種等可能的結(jié)果,兩名同學(xué)恰為一男一女的有12種情況,從而可求出答案.解:(1)由題意可知該班的總?cè)藬?shù)=15÷30%=50(名)故答案為50;(2)足球項(xiàng)目所占的人數(shù)=50×18%=9(名),所以其它項(xiàng)目所占人數(shù)=50﹣15﹣9﹣16=10(名)補(bǔ)全條形統(tǒng)計(jì)圖如圖所示:(3)“乒乓球”部分所對應(yīng)的圓心角度數(shù)=360°×=115.2°,故答案為115.2°;(4)畫樹狀圖如圖.由圖可知,共有20種等可能的結(jié)果,兩名同學(xué)恰為一男一女的有12種情況,所以P(恰好選出一男一女)==.點(diǎn)睛:本題考查的是條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖的綜合運(yùn)用,概率的計(jì)算.讀懂統(tǒng)計(jì)圖,從不同的統(tǒng)計(jì)圖中得到必要的信息及掌握概率的計(jì)算方法是解決問題的關(guān)鍵.20、∠CMA=35°.【解題分析】

根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)得出,再根據(jù)是的平分線,即可得出的度數(shù),再由兩直線平行,內(nèi)錯(cuò)角相等即可得出結(jié)論.【題目詳解】∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=110°,∴∠CAB=70°,由作法知,是的平分線,∴.又∵AB∥CD,∴∠CMA=∠BAM=35°.【題目點(diǎn)撥】本題考查了角平分線的作法和意義,平行線的性質(zhì)等知識(shí)解決問題.解題時(shí)注意:兩直線平行,內(nèi)錯(cuò)角相等.21、(1);;(2)或;(3)存在,或或或.【解題分析】

(1)利用待定系數(shù)法求出反比例函數(shù)解析式,進(jìn)而求出點(diǎn)C坐標(biāo),最后用再用待定系數(shù)法求出一次函數(shù)解析式;

(2)利用圖象直接得出結(jié)論;

(3)分、、三種情況討論,即可得出結(jié)論.【題目詳解】(1)一次函數(shù)與反比例函數(shù),相交于點(diǎn),,∴把代入得:,∴,∴反比例函數(shù)解析式為,把代入得:,∴,∴點(diǎn)C的坐標(biāo)為,把,代入得:,解得:,∴一次函數(shù)解析式為;(2)根據(jù)函數(shù)圖像可知:當(dāng)或時(shí),一次函數(shù)的圖象在反比例函數(shù)圖象的上方,∴當(dāng)或時(shí),;(3)存在或或或時(shí),為等腰三角形,理由如下:過作軸,交軸于,∵直線與軸交于點(diǎn),∴令得,,∴點(diǎn)A的坐標(biāo)為,∵點(diǎn)B的坐標(biāo)為,∴點(diǎn)D的坐標(biāo)為,∴,①當(dāng)時(shí),則,,∴點(diǎn)P的坐標(biāo)為:、;②當(dāng)時(shí),是等腰三角形,,平分,,∵點(diǎn)D的坐標(biāo)為,∴點(diǎn)P的坐標(biāo)為,即;③當(dāng)時(shí),如圖:設(shè),則,在中,,,,由勾股定理得:,,解得:,,∴點(diǎn)P的坐標(biāo)為,即,綜上所述,當(dāng)或或或時(shí),為等腰三角形.【題目點(diǎn)撥】本題是反比例函數(shù)綜合題,主要考查了待定系數(shù)法,利用圖象確定函數(shù)值滿足條件的自變量的范圍,等腰三角形的性質(zhì),勾股定理,解(1)的關(guān)鍵是待定系數(shù)法的應(yīng)用,解(2)的關(guān)鍵是利用函數(shù)圖象確定x的范圍,解(3)的關(guān)鍵是分類討論.22、解:(1)圖見解析;(2)證明見解析.【解題分析】

(1)根據(jù)角平分線的作法作出∠ABC的平分線即可.(2)首先根據(jù)角平分線的性質(zhì)以及平行線的性質(zhì)得出∠ABE=∠AEB,進(jìn)而得出△ABO≌△FBO,進(jìn)而利用AF⊥BE,BO=EO,AO=FO,得出即可.【題目詳解】解:(1)如圖所示:(2)證明:∵BE平分∠ABC,∴∠ABE=∠EAF.∵平行四邊形ABCD中,AD//BC∴∠EBF=∠AEB,∴∠ABE=∠AEB.∴AB=AE.∵AO⊥BE,∴BO=EO.∵在△ABO和△FBO中,∠ABO=∠FBO,BO=EO,∠AOB=∠FOB,∴△ABO≌△FBO(ASA).∴AO=FO.∵AF⊥BE,BO=EO,AO=FO.∴四邊形ABFE為菱形.23、(1)證明見解析;(2);(3);【解題分析】

(1)連接OA、AD,如圖,利用圓周角定理得到∠B=∠ADC,則可證明∠ADC=2∠ACP,利用CD為直徑得到∠DAC=90°,從而得到∠ADC=60°,∠C=30°,則∠AOP=60°,于是可證明∠OAP=90°,然后根據(jù)切線的判斷定理得到結(jié)論;(2)利用∠P=30°得到OP=2OA,則,從而得到⊙O的直徑;(3)作EH⊥AD于H,如圖,由點(diǎn)B等分半圓CD得到∠BAC=45°,則∠DAE=45°,設(shè)DH=x,則DE=2x,所以然后求出x即可得到DE的長.【題目詳解】(1)證明:連接OA、AD,如圖,∵∠B=2∠P,∠B=∠ADC,∴∠ADC=2∠P,∵AP=AC,∴∠P=∠ACP,∴∠ADC=2∠ACP,∵CD為直徑,∴∠DAC=90°,∴∠ADC=60°,∠C=30°,∴△ADO為等邊三角形,∴∠AOP=60°,而∠P=∠ACP=30°,∴∠OAP=90°,∴OA⊥PA,∴PA是⊙O的切線;(2)解:在Rt△OAP中,∵∠P=30°,∴OP=2OA,∴∴⊙O的直徑為;(3)解:作EH⊥AD于H,如圖,∵點(diǎn)B等分半圓CD,∴∠BAC=45°,∴∠DAE=45°,設(shè)DH=x,在Rt△DHE中,DE=2x,在Rt△AHE中,∴即解得∴【題目點(diǎn)撥】本題考查了切線的判定與性質(zhì):經(jīng)過半徑的外端且垂直于這條半徑的直線是圓的切線.圓的切線垂直于經(jīng)過切點(diǎn)的半徑.判定切線時(shí)“連圓心和直線與圓的公共點(diǎn)”或“過圓心作這條直線的垂線”;有切線時(shí),常?!坝龅角悬c(diǎn)連圓心得半徑”.也考查了圓周角定理.24、(1)m=3,k=12;(2)或【解題分析】【分析】(1)把A(m,m+1),B(m+3,m-1)代入反比例函數(shù)y=,得k=m(m+1)=(m+3)(m-1),再求解;(2)用待定系數(shù)法求一次函數(shù)解析式;(3)過點(diǎn)A作AM⊥x軸于點(diǎn)M,過點(diǎn)B作BN⊥y軸于點(diǎn)N,兩線交于點(diǎn)P.根據(jù)平行四邊形判定和勾股定理可求出M,N的坐標(biāo).【題目詳解】解:(1)∵點(diǎn)A(m,m+1),B(m+3,m-1)都在反比例函數(shù)y=的圖像上,∴k=xy,∴k=m(m+1)=(m+3)(m-1),∴m2+m=m2+2m-3,解得m=3,∴k=3×(3+1)=12.(2)∵m=3,∴A(3,4),B(6,2).設(shè)直線AB的函數(shù)表達(dá)式為y=k′x+b(k′≠0),則解得∴直線AB的函數(shù)表達(dá)式為y=-x+6.(3)M(3,0),N(0,2)或M(-3,0),N(0,-2).解答過程如下:過點(diǎn)A作AM⊥x軸于點(diǎn)M,過點(diǎn)B作BN⊥y軸于點(diǎn)N,兩線交于點(diǎn)P.∵由(1)知:A(3,4),B(6,2),∴AP=PM=2,BP=PN=3,∴四邊形ANMB是平行四邊形,此時(shí)M(3,0),N(0,2).當(dāng)M′(-3,0),N′(0,-2)時(shí),根據(jù)勾股定理能求出AM′=BN′,AB=M′N′,即四邊形AM′N′B是平行四邊形.故M(3,0),N(0,2)或M(-3,0),N(0,-2).【題目點(diǎn)撥】本題考核知識(shí)點(diǎn):反比例函數(shù)綜合.解題關(guān)鍵點(diǎn):熟記反比例函數(shù)的性質(zhì).25、(1),,;(2)作圖見解析,面積,.【解題分析】

(1)由在平面直角坐標(biāo)系中的位置可得A、B、C的坐標(biāo),根據(jù)關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)特點(diǎn)即可得、、的坐標(biāo);(2)由旋轉(zhuǎn)的性質(zhì)可畫出旋轉(zhuǎn)后圖形,利用面積的和差計(jì)算出,然后根據(jù)扇形的面積公式求出,利用旋轉(zhuǎn)過程中掃過的面積進(jìn)行計(jì)算即可.再利用弧長公式求出點(diǎn)C所經(jīng)過的路徑長.【題目詳解】解:(1)由在平面直角坐標(biāo)系中的位置可得:,,,∵與關(guān)于原點(diǎn)對稱,∴,,(2)如圖所示,即為所求,∵,,∴,∴,∵,∴在旋轉(zhuǎn)過程中所掃過的面積:點(diǎn)所經(jīng)過的路徑:.【題目點(diǎn)撥】本題考查的是圖形的旋轉(zhuǎn)、及扇形面積和扇形弧長的計(jì)算,根據(jù)已知得出對應(yīng)點(diǎn)位置,作出圖形是解題的關(guān)鍵.26、發(fā)現(xiàn):(1)1,60°;(2)2;拓展:(1)相切,理由詳見解析;(2)45°;30°;(3)0°<α<30°或45°≤α<90°.【解題分析】

發(fā)現(xiàn):(1)利用垂徑定理和勾股定理即可求出點(diǎn)O到AB的距離;利用銳角三角函數(shù)的定義及軸對稱性就可求出∠ABA′.(2)根據(jù)切線的性質(zhì)得到∠OBA′=90°,從而得到∠ABA

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論