軟件開發(fā)中英文對(duì)照外文翻譯文獻(xiàn)_第1頁(yè)
軟件開發(fā)中英文對(duì)照外文翻譯文獻(xiàn)_第2頁(yè)
軟件開發(fā)中英文對(duì)照外文翻譯文獻(xiàn)_第3頁(yè)
軟件開發(fā)中英文對(duì)照外文翻譯文獻(xiàn)_第4頁(yè)
軟件開發(fā)中英文對(duì)照外文翻譯文獻(xiàn)_第5頁(yè)
已閱讀5頁(yè),還剩8頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

軟件開發(fā)中英文對(duì)照外文翻譯文獻(xiàn)軟件開發(fā)中英文對(duì)照外文翻譯文獻(xiàn)(文檔含英文原文和中文翻譯)譯文:仿真軟件開發(fā)低大型復(fù)雜腔基于UG的二次開發(fā)摘要---射擊和彈跳射線(SBR)二次開發(fā)的基礎(chǔ)軟件是由國(guó)標(biāo)庫(kù)(UG)。射線跟蹤的核心算法是基于優(yōu)化的非均勻有理b樣(NURBS)曲線表面相交算法建立在UG,導(dǎo)致非常高的射線路徑跟蹤的準(zhǔn)確性沒有嚙合從而保持原有的空腔模型的準(zhǔn)確性。它也是有效的避免同任何復(fù)雜的蛀牙,因?yàn)榧词构ぷ髌帘蔚倪^程。兩腔的幾何建模及其散射模擬成一個(gè)統(tǒng)一的平臺(tái),形成一個(gè)易用的綜合和環(huán)球環(huán)境電磁建模復(fù)雜的蛀牙。在本文開發(fā)的軟件對(duì)復(fù)雜腔散射建模引入了一些數(shù)值結(jié)果顯示的準(zhǔn)確性和效率關(guān)鍵詞--電大型復(fù)雜cavit;雷達(dá)截面;UG的二次開發(fā);射擊和彈跳射線(SBR);射線跟蹤I.介紹雷達(dá)截面(RCS)的分析電等大型復(fù)雜洞進(jìn)口或出口,雙面或三面角反射器等,是計(jì)算電磁學(xué)中最重要的主題之一。低大型復(fù)雜的空腔結(jié)構(gòu),只有基于高頻方法如射擊和彈跳射線(SBR)[1][2][3]是合適的。傳統(tǒng)上,為三步驟采用SBR首先,模型腔的CAD軟件和網(wǎng)格表面的內(nèi)墻,然后出口信息網(wǎng)格的結(jié)果;其次發(fā)現(xiàn)表面上的光線的反射點(diǎn)ray-surface十字路口和屏蔽計(jì)算;最后計(jì)算RCS即將離任的射線從腔。雖然這些網(wǎng)基于射線跟蹤可用于任意形狀的蛀牙從理論上講,它有不準(zhǔn)確的缺點(diǎn)路徑建立在復(fù)雜的蛀牙導(dǎo)致貧窮的RCS計(jì)算精度。電大型復(fù)雜的蛀牙,射線跟蹤的效率很低,由于分離腔建模與RCS計(jì)算復(fù)雜的仿真過程。為了解決這些問題,一個(gè)強(qiáng)大的CAD軟件,模擬電大型復(fù)雜腔并計(jì)算其RCS在同一平臺(tái)。開發(fā)的軟件具有以下優(yōu)勢(shì):1)腔建模和RCS計(jì)算在UG集成,因此仿真過程大大簡(jiǎn)化。2)表面嚙合沒有必要而射線可以追蹤精度高和效率在任何任意形狀的空腔。3)開發(fā)的軟件是通用的電磁散射的凹面反射鏡結(jié)構(gòu),如蛀牙和角落。小說射線追蹤方法的新的先進(jìn)的軟件是基于UG的二次開發(fā)將討論下一步,和RCS仿真結(jié)果。II.提出的方法射擊和彈跳射線(SBRSBR的基本概念是一個(gè)平面波由足夠大量的平行光管(這里使用三角射線管)事件上的孔腔開放,每個(gè)射線管的能量集中在中線反映空腔墻基于幾何光學(xué)定律和最終的開孔和樹葉射線管足跡在中央的場(chǎng)振幅計(jì)算射線通過考慮幾何差異因素,極化和材料加載腔壁。的總散射提起腔由總結(jié)發(fā)現(xiàn)散射場(chǎng)計(jì)算每個(gè)管的基爾霍夫近似衍射場(chǎng)的足跡在這里rim是可以忽略的比較從腔背散射的主導(dǎo)部分。SBR的詳細(xì)理論可以在[1]和[2]。b射線追蹤方法基于UG的二次開發(fā)UG是先進(jìn)的CAD/CAM/CAE軟件,采用非均勻有理b樣(NURBS)作為其主要的建模工具。它提供了強(qiáng)大的建模能力和任意復(fù)雜腔建模精度高UG的二次開發(fā)工具UG/開放的APIUG和外來的程序之間的交互。UG/OpenAPI包含大約2000個(gè)函數(shù)可以直接調(diào)用c++環(huán)境中有兩種不同的模式對(duì)UG/開放項(xiàng)目:內(nèi)部模式和外部模式。通過構(gòu)建一個(gè)動(dòng)態(tài)鏈接庫(kù)允許訪問幾何模型及其相對(duì)日期在國(guó)標(biāo)庫(kù)會(huì)話直接使用UG/開放的API函數(shù)。內(nèi)部模式是使用DLL鏈接,在連接速度快的優(yōu)勢(shì),因此,本文選擇了使用UG/開放api,可以建立一種有效的射線追蹤方法和高精度優(yōu)化基于NURBS曲線表面相交的算法。沒有復(fù)雜的嚙合和屏蔽程序,新的射線跟蹤方法更容易比傳統(tǒng)項(xiàng)目。圖1顯示了發(fā)現(xiàn)每個(gè)光線的反射點(diǎn)在腔室內(nèi)的墻上發(fā)達(dá)的射線追蹤方法。如果利用三角射線管,四個(gè)射線包括三條邊和一個(gè)中央線管,需要追蹤如上所述。請(qǐng)全部實(shí)現(xiàn)的蛀牙與平臺(tái)結(jié)構(gòu)通過跟蹤只有中央射線正如上面所討論的。后找到一個(gè)反射點(diǎn)內(nèi)墻,飛機(jī)的數(shù)學(xué)表達(dá)式可以使用點(diǎn)的坐標(biāo)和單位法向量,然后反射光線的三條邊射線管根據(jù)解析后的飛機(jī)可以找到。這進(jìn)一步進(jìn)步會(huì)帶來一個(gè)巨大的減少射線追蹤的時(shí)間。圖1所示。射線路徑發(fā)現(xiàn)的射線追蹤方法基于UG的二次開發(fā)。這個(gè)圖顯示三個(gè)入射光線入射方向發(fā)射的,和路徑從參考點(diǎn)的s形腔,然后反映在內(nèi)墻,最后到達(dá)開孔。事實(shí)上,這部小說SBR上面討論不僅可以應(yīng)用在蛀牙,但也提供了一種新方法的電大尺寸目標(biāo)的散射計(jì)算考慮多個(gè)現(xiàn)場(chǎng)互動(dòng),和過程將大大簡(jiǎn)化由于避免嚙合和屏蔽需要在傳統(tǒng)的物理光學(xué)(PO)。該方法的過程仿真過程的方法是:1)模型或在UG中導(dǎo)入一個(gè)腔會(huì)話。2)自動(dòng)識(shí)別腔開放光圈。3)代表了入射波與數(shù)量足夠大的平行光管開孔腔和發(fā)射射線追蹤。4)計(jì)算每個(gè)即將離任的背散射場(chǎng)在開孔管足跡。5)總結(jié)的背散射場(chǎng)管足跡和計(jì)算RCS的腔。軟件是通用的相對(duì)任意蛀牙和凹結(jié)構(gòu)由于小說射線追蹤方法建立與UG/開放API函數(shù)和一個(gè)統(tǒng)一的平臺(tái)整合腔在UG建模和RCS計(jì)算。RAM涂層蛀牙也可以輕松地在這個(gè)軟件。一個(gè)用戶友好的界面與UG/OpenUIStyler發(fā)達(dá),在UG提供的GUI工具III.數(shù)值結(jié)果本文模擬了使用矩形腔,一個(gè)三角形的三面角反射器和一個(gè)矩形入口壓電陶瓷墻來演示開發(fā)的軟件。計(jì)算環(huán)境是奔騰4-2.8ghz處理器,1gb內(nèi)存和WindowsXP操作系統(tǒng)。入射波頻率10GHz,一步是程度1°模擬,俯仰角度θ從+z方向和方位角度φ從+x方向的模型。A.RCS的矩形腔和效率分析圖2顯示了RCS的矩形腔的比較10_,_方形截面,30_長(zhǎng)度[7]和模擬結(jié)果與開發(fā)的軟件在不同的N(N是每個(gè)波長(zhǎng)的節(jié)點(diǎn)數(shù)量,有四個(gè)光管穿過每個(gè)網(wǎng)格開放,所以光管的數(shù)量N×N×4平方波長(zhǎng))。這個(gè)數(shù)字表明快速收斂的開發(fā)了SBR的基礎(chǔ)上提出新的射線追蹤與平臺(tái)腔結(jié)構(gòu)。結(jié)果得到收斂當(dāng)N達(dá)到4,線管的數(shù)量是64平方波長(zhǎng)在這種情況下,N是以下模擬設(shè)置為4。模擬結(jié)果與[7]中的結(jié)果吻合較好。θ度數(shù)圖形2.RCS的矩形腔與不同的N,平行極化表1顯示了CPU時(shí)間不同N在上面模擬,演示了該方法的效率高。表一、CPU時(shí)間不同的NN2345CPU時(shí)間(分鐘)1.704.018.3717.49B.三角形的三面角反射器的RCSRCS計(jì)算的三角形三面角反射器5_邊長(zhǎng)度是如圖3所示.我們的結(jié)果再次同意與MLFMMFEKO的結(jié)果很好。微小的區(qū)別來自于衍射場(chǎng)不覆蓋目前在我們的結(jié)果。.需要1.67分鐘和45分鐘為我們的軟件和FEKO分別模擬結(jié)果。如此高的效率使它適合計(jì)算電磁散射從電大型復(fù)雜腔沒有要求額外的計(jì)算機(jī)內(nèi)存。C.矩形進(jìn)氣道的RCS散射模擬飛機(jī)的入口,典型的電大型復(fù)雜腔,在計(jì)算電——磁學(xué)仍然是一個(gè)挑戰(zhàn)性的任務(wù)。圖4是一個(gè)矩形入口的模型[7]和其RCS模擬軟件。需要16.58分鐘,25.15分鐘得到的結(jié)果裝具(b)和(c)。找到優(yōu)秀的協(xié)議與參考文獻(xiàn)[7]中的結(jié)果。所有這些結(jié)果驗(yàn)證新的射線追蹤方法的準(zhǔn)確性對(duì)于復(fù)雜的蛀牙在我們開發(fā)的軟件。(a)個(gè)矩形入口的模型圖4.矩形進(jìn)氣道的RCS,平行極化IV.結(jié)論一個(gè)新穎的射線追蹤方法和相應(yīng)的SBR相對(duì)任意腔散射模擬軟件開發(fā)基于UG的二次開發(fā)。軟件的仿真程序進(jìn)行了探討。一些結(jié)果,顯示良好的準(zhǔn)確性和效率高的散射建模電大型復(fù)雜的蛀牙。參考文獻(xiàn)[1]郝凌、周Ri-cheeShung-wu李。射擊和彈跳射線:RCS的計(jì)算任意形狀的空腔。IEEE反式天線progat,1989年,37(2):194–205[2]角色h·帕沙克,羅伯特·j·霍爾德。模態(tài)、射線和梁的技術(shù)分析開放式波導(dǎo)腔的電磁散射。IEEE反式天線progat,1989年,37(5):635-647[3]嬴政阮。電磁輻射的基本理論。成都電訊工程學(xué)院出版社,1984年[4]傅雅寧。計(jì)算機(jī)圖形學(xué)。國(guó)防工業(yè)出版社,2005[5]李建州,徐家棟,等?;趪?guó)標(biāo)庫(kù)的設(shè)計(jì)評(píng)估軟件。中國(guó)無線電科學(xué)學(xué)報(bào),2005,20(2):222-225[6]李建周,徐家棟等.綜合RCS(雷達(dá)截面)計(jì)算一個(gè)更有效的RCS計(jì)算方法。西北工業(yè)大學(xué)學(xué)報(bào),2003,21(4):449-452[7]郝凌,Shung-wu李Ri-chee周。高高頻RCS開放腔的矩形和圓形的橫截面。IEEE反式天線progat,1989年,37(5):648–654原文:DevelopmentofRCSsimulationsoftwareforelectricallylargecomplexcavitiesbasedonthesecondarydevelopmentofUGLIJianzhouJIANGYingfuXUJiadongSchoolofElectronicsandInformation,NorthwesternPolytechnicalUniversity,Xi’anShanxi710129,ChinaAbstrac---t-Ashootingandbouncingray(SBR)basedsoftwareisdevelopedbythesecondarydevelopmentofUnigraphics(UG).ThecorealgorithmofraytracingisbasedontheoptimizedNon-uniformRationalB-splines(NURBS)curve-surfaceintersectionalgorithmbuiltinUG,whichresultsinveryhighaccuracyofraypathtracingwithoutmeshingthuskeepingtheaccuracyoftheoriginalcavitymodel.Itisalsoefficientevenifworkwithacomplexcavitiesbecauseofavoidingofshieldingprocess.Bothgeometrymodelingofcavityanditsscatteringsimulationareintoauniformplatform,whichformsaneasy-usingintegrativeanduniversalenvironmentforelectromagneticmodelingofcomplexcavities.。Inthispaper,thedevelopedsoftwareforcomplexcavityscatteringmodelinghasbeenintroducedwithsomenumericalresultstodemonstratetheaccuracyandefficiencyKeywords-electricallylargecomplexcavit;RadarCrossSection;secondarydevelopmentofUG;shootingandbouncingrays(SBR);ray-tracingI.INTRODUCTIONRadarcrosssection(RCS)analysisofelectricallylargecomplexcavitiessuchasinletoroutlet,dihedralortrihedralcornerreflectoretc.,。isoneofthemostimportanttopicsincomputationalelectromagnetics.Forelectricallylargecomplexcavitystructures,onlyhighfrequencybasedmethodsuchasshootingandbouncingray(SBR)[1][2][3]issuitable.Traditionally,therearethreestepstoemploySBRFirstly,tomodelthecavityinCADsoftwareandmeshsurfacesofitsinteriorwalls,thenexportsinformationofthemeshresults;secondlyfindingthereflectionpointsoftheraysonthesurfacesbyray-surfaceintersectionandshieldingcalculation;finallycalculatesRCSfromtheoutgoingraysfromthecavity.Althoughsuchmeshbasedraytracingcanbeusedinarbitrarilyshapedcavitiestheoretically,ithasthedisadvantageofinaccuratepathsfoundingincomplexcavitieswhichleadtoapoorRCScalculationaccuracy。.Forelectricallylargecomplexcavities,theefficiencyofraytracingisverylowduetotheseparationofcavitymodelingandRCScalculationwithacomplicatedsimulationprocedure.Toaddresstheseproblems,anintegratedsimulationsoftwareisdevelopedbasedonsecondarydevelopmentofUnigraphics(UG),,apowerfulCADsoftware,tomodelelectricallylargecomplexcavityandcalculateitsRCSaswellinthesameplatform.Thedevelopedsoftwarehasthefollowingadvantages:1)CavitymodelingandRCScalculationareintegratedinUG,thereforethesimulationprocedureisgreatlysimplified.2)Surfacemeshingisnotnecessarywhereasrayscanbetracedwithhighaccuracyandefficiencyinsideanyarbitrarilyshapedcavity.3)Thedevelopedsoftwareisuniversalforelectromagneticscatteringfromanykindofconcavestructuressuchascavitiesandcornerreflectors.AnovelraytracingmethodofthisnewadvancedsoftwarewhichisbasedonthesecondarydevelopmentofUGwillbediscussednext,andtheRCSsimulationresultsarefollowed.II.PROPOSEDMETHODA.Shootingandbouncingrays(SBR)ThebasicconceptofSBRisthataplanewaverepresentedbyasufficientlylargenumberofparallelraytubes(triangularraytubeisusedhere)incidentontotheapertureatthecavityopenend,eachraytubewithenergyconcentratedonthecentrelinereflectsfromthecavitywallsbasedonthelawofgeometricalopticsandeventuallycomestotheopeningapertureandleavesaray-tubefootprintonitThefieldamplitudeofthecentralrayiscalculatedbytakingconsiderationofgeometricaldivergencefactor,polarizationandmaterialloadingofthecavitywalls.ThetotalscatteringfiledofthecavityisfoundbysummingupthescatteringfieldcalculatedbyKirchhoff’sapproximationfromeachindividualtubefootprintInherethediffractingfieldoftherimisnegligiblecomparingtothedominateportionofbackscatteringfromthecavity.ThedetailtheoryofSBRcanbefoundin[1]and[2].B.RaytracingmethodbasedonsecondarydevelopmentofUGUGisadvancedCAD/CAM/CAEsoftwarewhichusesNon-uniformRationalB-splines(NURBS)asitsmainmodelingtool.Itprovidespowerfulmodelingabilityandhighaccuracyforarbitrarilycomplexcavitymodeling.ThesecondarydevelopmenttoolsUG/OpenAPIofUGinteractbetweenUGandexternprogram.UG/OpenAPIcontainsapproximately2000functionswhichcanbecalleddirectlyinC++environmentTherearetwodifferentmodesforUG/Openprograms:InternalModeandExternalMode.Bybuildingadynamic-linklibraryallowstoaccessthegeometrymodelanditsrelativedatewithinaUnigraphicssessionusingUG/OpenAPIfunctionsdirectly.InternalModeisusingDLLlinkwhichhastheadvantageoffastinspeedlinking,thereforeithasbeenchoseninthispaperByusingUG/OpenAPIs,anefficientraytracingmethodcanbebuiltwithhighaccuracybasedonoptimizedNURBScurve-surfaceintersectionalgorithm.Withoutcomplicatedmeshingandshieldingprocedures,thenovelraytracingmethodismucheasiertoprogramthanthetraditionalone.Figure1showsfindingthereflectionpointsofeachrayoncavityinteriorwallswithdevelopedraytracingmethod.TheprocedureofraytracingisbasedonthesecondarydevelopmentofUG:1)Gettheidentifierofthesimulatedcavity.EachitemmodeledinUGhasitsownidentifier(tag)fromwhichallthegeometryinformationcanbeidentifiedray-surfaceintersectionfunctionsinUG/OpenAPI.Theinterestedparametersincludingthecoordinatesoftheintersectionpointsonthecavitywalls,theunitnormalvectorsandtheradiusofprincipalcurvaturecanbeextractedwithafewinputtinginformation,suchascavityidentifier,thecoordinatesofthestartingpointandtheincidentdirectionoftheray.3)UseSnell’slawtofindthereflectionrayattheinteriorintersectionpoint,andrepeatingtheproceduresabovetofindthenextinteriorintersectionpointtilltherayshootoutthecavityfromtheopeningaperture.AlsotheeffectofRAMcoatingcanbeeasilyaddedtothedevelopedSBRprocedure.Ingeneral,iftriangularraytubeisutilized,fourraysincludingthreeedgesandonecentralrayofthetube,areneededtobetracedasdescribedabove.。beachievedforthecavitieswithplatstructuresbytracingonlythecentralrayasdiscussedabove.Afterfindingareflectionpointontheinteriorwalls,themathematicalexpressionoftheplanecanbeobtainedusingthecoordinatesandunitnormalvectorofthatpointandthenthereflectionraysofthethreeedgesoftheraytubecanbefoundaccordingtotheresolvedplane.Thisfurtherimprovementleadstoahugereductionofraytracingtime.Figure1.TheraypathsfoundbytheraytracingmethodbasedonthesecondarydevelopmentofUG.Thisfiguredisplaysthreeincidentrayslaunchedfromtheincidentdirection,andthepathsstartfromthereferencepointsoutoftheS-shapedcavity,thenreflectattheinteriorwalls,andfinallyarriveattheopeningaperture.Infact,thenovelSBRdiscussedabovenotonlycanbeappliedoncavities,butalsoprovidesanewwayofscatteringcalculationofelectricallylargetargetswithconsideringmultiplefieldinteraction,andtheprocedurewillbegreatlysimplifiedthankstoavoidingmeshingandshieldingneededintraditionalphysicaloptics(PO).C.ProcessoftheProposedMethodThesimulationprocedureofproposedmethodis:1)ModelorimportacavityinUGsession.2)Identifythecavityandopeningapertureautomatically.3)Representtheincidentwavewithasufficientlylargenumberofparallelraytubesontheopeningapertureandlaunchraytracinginthecavity.4)Calculatethebackscatteringfieldofeachoutgoingtubefootprintontheopeningaperture.5)SumupthebackscatteringfieldofallthetubefootprintsandcalculateRCSofthecavity.ThesoftwareisuniversalforrelativelyarbitrarycavitiesandconcavestructuresduetothenovelraytracingmethodbuiltwithUG/OpenAPIfunctionsandauniformplatformintegratingcavitymodelingandRCScomputinginUG.RAMcoatedcavitiescanalsobeeasilyperformedinthissoftware.AuserfriendlyinterfaceisdevelopedwithUG/OpenUIStyler,theGUItoolprovidedinUG.III.NUMERICALRESULTSInthispaper,thesimulationshavebeendoneusingarectangularcavity,atriangulartrihedralcornerreflectorandarectangularinletwithPECwallstodemonstratethedevelopedsoftware.ThecomputationenvironmentisPentium4-2.8GHzprocessor,1GBmemorywithWindowsXPoperatingsystem.Incidentwavefrequencyis10GHz,andthedegreestepis1°forallthesimulations,thepitchingangleθstartsfrom+zdirectionandtheazimuthangleφstartsfrom+xdirectioninthemodels.A.RCSofrectangularcavityandtheefficiencyanalysisFigure2showsthecomparisonofRCSofarectangularcavitywith10_by10_squarecrosssection,30_lengthin[7]andsimulatedresultswithdevelopedsoftwareindifferentN(Nisthenumberofnodesperwavelength,therearefourraytubesgoingthrougheachgridontheopening,sothenumberofraytubesisN×N×4inasquarewavelength).ThisfigureindicatesfastconvergenceofthedevelopedSBRbasedontheproposednovelraytracingforacavitywithplatstructures.TheresultsgetconvergentwhenNreaches4,andthenumberofraytubesis64inasquarewavelengthinthiscase,soNissetto4forthefollowingsimulations.Thesimulatedresultsagreewellwiththeresultsin[7].θ(DEGREES)Figure2.RCSofrectangularcavitywithdifferentN,parallelpolarizationTable1showsCPUtimefordifferentNinabovesimulation,whichdemonstrateshighefficiencyoftheproposedmethod.TABLEI.CPUTIMEFORDIFFERENTNN2345CPUtime(min)1.704.018.3717.49B.RCSofatriangulartrihedralcornerreflectorCalculatedRCSofatriangulartrihedralcornerreflectorwith5_edgelengthisshowninFigure3.OurresultagainagreesverywellwiththeMLFMMresultofFEKO.Theslightdifferencecomesfromthediffractionfieldwhichisnotcoveredatthemomentinourresult.Ittakes1.67minand45minforoursoftwareandFEKOrespectively,tosimulatetheresults.Suchhighefficiencymakesitsuitableforcalculatingelectromagneticscatteringfromelectricallylargecomplexcavitieswithoutrequirementofadditionalcomputermemory.Figure3.RCSofatriangulartrihedralcornerreflector,?=45°,parallelpolarizationC.RCSofarectangularinletScatteringsimulationofinletofaircraft,typicalelectricallylargecomplexcavity,remainsachallengingtaskincomputationalelectro-magnetics.Figure4isthemodelofarectangularinlet[7]anditsRCSsimulatedbyoursoftware.Ittakes16.58minand25.15mintogettheresultofFigure4(b)and(c)respectively.Excellentagreementisfoundwiththeresultinreference[7].Alltheseresultsvalidatetheaccuracyofthenovelraytracingmet

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論